{"title":"并联混合微带-基底集成波导带阻滤波器","authors":"Kemal Guvenli, S. Yenikaya, Mustafa Secmen","doi":"10.5755/j02.eie.31628","DOIUrl":null,"url":null,"abstract":"This study presents an original parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter. A low-pass filter implemented on a microstrip structure and a SIW-based high-pass filter are connected in parallel to each other. In this way, the aim is to obtain a bandstop filter in the novel hybrid design. The parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter is synthesised, simulated, and produced. The effects of connecting filters in parallel are discussed. It is seen from the results of CST Studio Suite simulation that PCHM-SIW bandstop filter has a bandwidth of 2.85 GHz and a center frequency of 4.26 GHz. The frequency change rate of the center frequency between simulation and measurement is 7.02 % where it is just 3.76 % for the deviation in bandwidth. The results of the simulation and those of the measurement are close to each other. These results converge to ideal analytical results.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":"49 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel Connected Hybrid Microstrip-Substrate Integrated Waveguide Bandstop Filter\",\"authors\":\"Kemal Guvenli, S. Yenikaya, Mustafa Secmen\",\"doi\":\"10.5755/j02.eie.31628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an original parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter. A low-pass filter implemented on a microstrip structure and a SIW-based high-pass filter are connected in parallel to each other. In this way, the aim is to obtain a bandstop filter in the novel hybrid design. The parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter is synthesised, simulated, and produced. The effects of connecting filters in parallel are discussed. It is seen from the results of CST Studio Suite simulation that PCHM-SIW bandstop filter has a bandwidth of 2.85 GHz and a center frequency of 4.26 GHz. The frequency change rate of the center frequency between simulation and measurement is 7.02 % where it is just 3.76 % for the deviation in bandwidth. The results of the simulation and those of the measurement are close to each other. These results converge to ideal analytical results.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\"49 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.31628\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31628","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种独创的并联混合微带-基底集成波导(PCHM-SIW)带阻滤波器。在微带结构上实现的低通滤波器和基于 SIW 的高通滤波器相互并联。这样,新型混合设计就能获得带阻滤波器。我们合成、模拟并制作了并联混合微带-基底集成波导(PCHM-SIW)带阻滤波器。讨论了并联滤波器的效果。从 CST Studio Suite 仿真结果可以看出,PCHM-SIW 阻带滤波器的带宽为 2.85 GHz,中心频率为 4.26 GHz。模拟与测量之间的中心频率变化率为 7.02%,而带宽偏差仅为 3.76%。模拟结果和测量结果非常接近。这些结果趋近于理想的分析结果。
A Parallel Connected Hybrid Microstrip-Substrate Integrated Waveguide Bandstop Filter
This study presents an original parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter. A low-pass filter implemented on a microstrip structure and a SIW-based high-pass filter are connected in parallel to each other. In this way, the aim is to obtain a bandstop filter in the novel hybrid design. The parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter is synthesised, simulated, and produced. The effects of connecting filters in parallel are discussed. It is seen from the results of CST Studio Suite simulation that PCHM-SIW bandstop filter has a bandwidth of 2.85 GHz and a center frequency of 4.26 GHz. The frequency change rate of the center frequency between simulation and measurement is 7.02 % where it is just 3.76 % for the deviation in bandwidth. The results of the simulation and those of the measurement are close to each other. These results converge to ideal analytical results.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.