{"title":"基于多头 CNN 的软件开发风险分类","authors":"Ayesha Ziana M., Charles J.","doi":"10.32985/ijeces.14.10.1","DOIUrl":null,"url":null,"abstract":"Agile methodology for software development has been in vogue for a few decades, notably among small and medium enterprises. The omission of an explicit risk identification approach turns a blind eye to a range of perilous risks, thus dumping the management into strenuous situations and precipitating dreadful issues at the crucial stages of the project. To overcome this drawback a novel Agile Software Risk Identification using Deep learning (ASRI-DL) approach has been proposed that uses a deep learning technique along with the closed fishbowl strategy, thus assisting the team in finding the risks by molding them to think from diverse perspectives, enhancing wider areas of risk coverage. The proposed technique uses a multi-head Convolutional Neural Network (Multihead-CNN) method for classifying the risk into 11 classes such as over-doing, under-doing, mistakes, concept risks, changes, differences, difficulties, dependency, conflicts, issues, and challenges in terms of producing a higher number of risks concerning score, criticality, and uniqueness of the risk ideas. The descriptive statistics further demonstrate that the participation and risk coverage of the individuals in the proposed methodology exceeded the other two as a result of applying the closed fishbowl strategy and making use of the risk identification aid. The proposed method has been compared with existing techniques such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Generalized Linear Models (GLM), and CNN using specific parameters such as accuracy, specificity, and sensitivity. Experimental findings show that the proposed ASRI-DL technique achieves a classification accuracy of 99.16% with a small error rate with 50 training epochs respectively.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"52 24","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Head CNN-based Software Development Risk Classification\",\"authors\":\"Ayesha Ziana M., Charles J.\",\"doi\":\"10.32985/ijeces.14.10.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agile methodology for software development has been in vogue for a few decades, notably among small and medium enterprises. The omission of an explicit risk identification approach turns a blind eye to a range of perilous risks, thus dumping the management into strenuous situations and precipitating dreadful issues at the crucial stages of the project. To overcome this drawback a novel Agile Software Risk Identification using Deep learning (ASRI-DL) approach has been proposed that uses a deep learning technique along with the closed fishbowl strategy, thus assisting the team in finding the risks by molding them to think from diverse perspectives, enhancing wider areas of risk coverage. The proposed technique uses a multi-head Convolutional Neural Network (Multihead-CNN) method for classifying the risk into 11 classes such as over-doing, under-doing, mistakes, concept risks, changes, differences, difficulties, dependency, conflicts, issues, and challenges in terms of producing a higher number of risks concerning score, criticality, and uniqueness of the risk ideas. The descriptive statistics further demonstrate that the participation and risk coverage of the individuals in the proposed methodology exceeded the other two as a result of applying the closed fishbowl strategy and making use of the risk identification aid. The proposed method has been compared with existing techniques such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Generalized Linear Models (GLM), and CNN using specific parameters such as accuracy, specificity, and sensitivity. Experimental findings show that the proposed ASRI-DL technique achieves a classification accuracy of 99.16% with a small error rate with 50 training epochs respectively.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"52 24\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.10.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.10.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-Head CNN-based Software Development Risk Classification
Agile methodology for software development has been in vogue for a few decades, notably among small and medium enterprises. The omission of an explicit risk identification approach turns a blind eye to a range of perilous risks, thus dumping the management into strenuous situations and precipitating dreadful issues at the crucial stages of the project. To overcome this drawback a novel Agile Software Risk Identification using Deep learning (ASRI-DL) approach has been proposed that uses a deep learning technique along with the closed fishbowl strategy, thus assisting the team in finding the risks by molding them to think from diverse perspectives, enhancing wider areas of risk coverage. The proposed technique uses a multi-head Convolutional Neural Network (Multihead-CNN) method for classifying the risk into 11 classes such as over-doing, under-doing, mistakes, concept risks, changes, differences, difficulties, dependency, conflicts, issues, and challenges in terms of producing a higher number of risks concerning score, criticality, and uniqueness of the risk ideas. The descriptive statistics further demonstrate that the participation and risk coverage of the individuals in the proposed methodology exceeded the other two as a result of applying the closed fishbowl strategy and making use of the risk identification aid. The proposed method has been compared with existing techniques such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Generalized Linear Models (GLM), and CNN using specific parameters such as accuracy, specificity, and sensitivity. Experimental findings show that the proposed ASRI-DL technique achieves a classification accuracy of 99.16% with a small error rate with 50 training epochs respectively.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.