生物磁脉冲流通过通道的数值模拟

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED International Journal of Modern Physics B Pub Date : 2023-12-12 DOI:10.1142/s0217979224504101
Ranjith Maniyeri
{"title":"生物磁脉冲流通过通道的数值模拟","authors":"Ranjith Maniyeri","doi":"10.1142/s0217979224504101","DOIUrl":null,"url":null,"abstract":"The study of biological fluids in the presence of a magnetic field is known as biomagnetic fluid dynamics (BFD). The research work in BFD has been rapidly growing due to its applications in developing magnetic devices used for cell separation, targeted drug delivery and cancer tumor treatment. This study aims to examine the biomagnetic fluid flow with pulsatile conditions through a channel when subjected to a magnetic field that varies in space. The nondimensional continuity and momentum equations are solved with the effect of the magnetic field added as a body force. A two-dimensional computational model is developed using the finite volume method and is implemented on a staggered grid system with the help of the semi-implicit fractional step method. The code is written using MATLAB. Numerical simulations are performed by varying the Magnetic, Reynolds and Womersley numbers. Pulsatile flow results indicate the periodic growth and decay of vortices near the source of the magnetic field. With an increase in the magnetic number from 100 to 150, 250 and 500, the maximum vorticity increases by 48.04%, 149.84% and 402.68%. A similar relation is found when varying the Reynolds number, while almost no change is found when varying the Womersley number.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"89 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of biomagnetic pulsatile flow through a channel\",\"authors\":\"Ranjith Maniyeri\",\"doi\":\"10.1142/s0217979224504101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of biological fluids in the presence of a magnetic field is known as biomagnetic fluid dynamics (BFD). The research work in BFD has been rapidly growing due to its applications in developing magnetic devices used for cell separation, targeted drug delivery and cancer tumor treatment. This study aims to examine the biomagnetic fluid flow with pulsatile conditions through a channel when subjected to a magnetic field that varies in space. The nondimensional continuity and momentum equations are solved with the effect of the magnetic field added as a body force. A two-dimensional computational model is developed using the finite volume method and is implemented on a staggered grid system with the help of the semi-implicit fractional step method. The code is written using MATLAB. Numerical simulations are performed by varying the Magnetic, Reynolds and Womersley numbers. Pulsatile flow results indicate the periodic growth and decay of vortices near the source of the magnetic field. With an increase in the magnetic number from 100 to 150, 250 and 500, the maximum vorticity increases by 48.04%, 149.84% and 402.68%. A similar relation is found when varying the Reynolds number, while almost no change is found when varying the Womersley number.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"89 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224504101\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979224504101","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对存在磁场的生物流体的研究被称为生物磁流体动力学(BFD)。由于生物磁流体动力学在开发用于细胞分离、靶向给药和癌症肿瘤治疗的磁性设备方面的应用,其研究工作一直在快速增长。本研究旨在探讨在空间变化的磁场作用下,生物磁性流体在脉动条件下流经通道的情况。在求解非一维连续性方程和动量方程时,加入了磁场作为体力的影响。利用有限体积法开发了一个二维计算模型,并借助半隐式分数步法在交错网格系统上实现了该模型。代码使用 MATLAB 编写。通过改变磁力、雷诺数和沃姆斯利数进行了数值模拟。脉动流结果表明,磁场源附近的涡旋呈周期性增长和衰减。随着磁力数从 100 增加到 150、250 和 500,最大涡度分别增加了 48.04%、149.84% 和 402.68%。在改变雷诺数时也发现了类似的关系,而在改变沃姆斯利数时几乎没有变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of biomagnetic pulsatile flow through a channel
The study of biological fluids in the presence of a magnetic field is known as biomagnetic fluid dynamics (BFD). The research work in BFD has been rapidly growing due to its applications in developing magnetic devices used for cell separation, targeted drug delivery and cancer tumor treatment. This study aims to examine the biomagnetic fluid flow with pulsatile conditions through a channel when subjected to a magnetic field that varies in space. The nondimensional continuity and momentum equations are solved with the effect of the magnetic field added as a body force. A two-dimensional computational model is developed using the finite volume method and is implemented on a staggered grid system with the help of the semi-implicit fractional step method. The code is written using MATLAB. Numerical simulations are performed by varying the Magnetic, Reynolds and Womersley numbers. Pulsatile flow results indicate the periodic growth and decay of vortices near the source of the magnetic field. With an increase in the magnetic number from 100 to 150, 250 and 500, the maximum vorticity increases by 48.04%, 149.84% and 402.68%. A similar relation is found when varying the Reynolds number, while almost no change is found when varying the Womersley number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
期刊最新文献
Möbius group actions in the solvable chimera model On the solutions of space-time fractional CBS and CBS-BK equations describing the dynamics of Riemann wave interaction Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis Electro-fluid-dynamics (EFD) of soft-bodied organisms swimming through mucus having dilatant, viscous, and pseudo-plastic properties Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1