{"title":"基于注意力的 RNN 模型在人类活动识别中手工制作特征的意义","authors":"S. Abraham, Rekha K. James","doi":"10.32985/ijeces.14.10.8","DOIUrl":null,"url":null,"abstract":"Sensors incorporated in devices are a source of temporal data that can be interpreted to learn the context of a user. The smartphone accelerometer sensor generates data streams that form distinct patterns in response to user activities. The human context can be predicted using deep learning models built from raw sensor data or features retrieved from raw data. This study analyzes data streams from the UCI-HAR public dataset for activity recognition to determine 31 handcrafted features in the temporal and frequency domain. Various stacked and combination RNN models, trained with attention mechanisms, are designed to work with computed features. Attention gave the models a good fit. When trained with all features, the two-stacked GRU model performed best with 99% accuracy. Selecting the most promising features helps reduce training time without compromising accuracy. The ranking supplied by the permutation feature importance measure and Shapley values are utilized to identify the best features from the highly correlated features. Models trained using optimal features, as determined by the importance measures, had a 96% accuracy rate. Misclassification in attention-based classifiers occurs in the prediction of dynamic activities, such as walking upstairs and walking downstairs, and in sedentary activities, such as sitting and standing, due to the similar range of each activity’s axis values. Our research emphasizes the design of streamlined neural network architectures, characterized by fewer layers and a reduced number of neurons when compared to existing models in the field, to design lightweight models to be implemented in resource-constraint gadgets.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"19 5","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of handcrafted features in human activity recognition with attention-based RNN models\",\"authors\":\"S. Abraham, Rekha K. James\",\"doi\":\"10.32985/ijeces.14.10.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors incorporated in devices are a source of temporal data that can be interpreted to learn the context of a user. The smartphone accelerometer sensor generates data streams that form distinct patterns in response to user activities. The human context can be predicted using deep learning models built from raw sensor data or features retrieved from raw data. This study analyzes data streams from the UCI-HAR public dataset for activity recognition to determine 31 handcrafted features in the temporal and frequency domain. Various stacked and combination RNN models, trained with attention mechanisms, are designed to work with computed features. Attention gave the models a good fit. When trained with all features, the two-stacked GRU model performed best with 99% accuracy. Selecting the most promising features helps reduce training time without compromising accuracy. The ranking supplied by the permutation feature importance measure and Shapley values are utilized to identify the best features from the highly correlated features. Models trained using optimal features, as determined by the importance measures, had a 96% accuracy rate. Misclassification in attention-based classifiers occurs in the prediction of dynamic activities, such as walking upstairs and walking downstairs, and in sedentary activities, such as sitting and standing, due to the similar range of each activity’s axis values. Our research emphasizes the design of streamlined neural network architectures, characterized by fewer layers and a reduced number of neurons when compared to existing models in the field, to design lightweight models to be implemented in resource-constraint gadgets.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.10.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.10.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Significance of handcrafted features in human activity recognition with attention-based RNN models
Sensors incorporated in devices are a source of temporal data that can be interpreted to learn the context of a user. The smartphone accelerometer sensor generates data streams that form distinct patterns in response to user activities. The human context can be predicted using deep learning models built from raw sensor data or features retrieved from raw data. This study analyzes data streams from the UCI-HAR public dataset for activity recognition to determine 31 handcrafted features in the temporal and frequency domain. Various stacked and combination RNN models, trained with attention mechanisms, are designed to work with computed features. Attention gave the models a good fit. When trained with all features, the two-stacked GRU model performed best with 99% accuracy. Selecting the most promising features helps reduce training time without compromising accuracy. The ranking supplied by the permutation feature importance measure and Shapley values are utilized to identify the best features from the highly correlated features. Models trained using optimal features, as determined by the importance measures, had a 96% accuracy rate. Misclassification in attention-based classifiers occurs in the prediction of dynamic activities, such as walking upstairs and walking downstairs, and in sedentary activities, such as sitting and standing, due to the similar range of each activity’s axis values. Our research emphasizes the design of streamlined neural network architectures, characterized by fewer layers and a reduced number of neurons when compared to existing models in the field, to design lightweight models to be implemented in resource-constraint gadgets.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.