犁不同形状和尺寸的田地时预测拖拉机燃料消耗量和二氧化碳排放量的标准验证

V. Damanauskas, A. Janulevičius
{"title":"犁不同形状和尺寸的田地时预测拖拉机燃料消耗量和二氧化碳排放量的标准验证","authors":"V. Damanauskas, A. Janulevičius","doi":"10.3390/agriengineering5040148","DOIUrl":null,"url":null,"abstract":"Climate change is linked to CO2 emissions, the reduction of which has become a top priority. In response to these circumstances, scientists must constantly develop new technologies that increase fuel efficiency and reduce emissions. Agriculture today is dominated by arable fields of various sizes, shapes, and dimensions, and to achieve fuel economy and environmental impact requirements, it is not enough to know only the principles of optimization of tillage processes; it is also necessary to understand the influence of field size and its shape and dimensions on tillage performance. The purpose of this research is to present a methodology that allows predicting tractor fuel demand and CO2 emissions per unit of ploughed area when ploughing field plots with different shapes and dimensions and to confirm a suitable variable for such a prediction. Theoretical calculations and experimental tests have shown that the field ploughing time efficiency coefficient is a useful metric for comparing field plots of different shapes and dimensions. This coefficient effectively describes tractor fuel consumption and CO2 emissions during ploughing operations on differently configured field plots. A reasonable method for calculating the real field ploughing time efficiency coefficient is based on field and tillage data and a practical determination method using tractor engine load reports. It was found that during the research, when ploughing six field plots of different shapes and dimensions, with an area of 6 ha, the field ploughing time efficiency coefficient varied from 0.68 to 0.82, and fuel consumption between 15.6 and 16.5 kg/ha. In the field plot of 6 ha, where the field ploughing time efficiency coefficient was 15% higher, the fuel consumption per unit area was lower by about 5.5%. The results of this study will help to effectively predict tillage time and tractor fuel consumption required for different field shapes and dimensions.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"29 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of Criteria for Predicting Tractor Fuel Consumption and CO2 Emissions When Ploughing Fields of Different Shapes and Dimensions\",\"authors\":\"V. Damanauskas, A. Janulevičius\",\"doi\":\"10.3390/agriengineering5040148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is linked to CO2 emissions, the reduction of which has become a top priority. In response to these circumstances, scientists must constantly develop new technologies that increase fuel efficiency and reduce emissions. Agriculture today is dominated by arable fields of various sizes, shapes, and dimensions, and to achieve fuel economy and environmental impact requirements, it is not enough to know only the principles of optimization of tillage processes; it is also necessary to understand the influence of field size and its shape and dimensions on tillage performance. The purpose of this research is to present a methodology that allows predicting tractor fuel demand and CO2 emissions per unit of ploughed area when ploughing field plots with different shapes and dimensions and to confirm a suitable variable for such a prediction. Theoretical calculations and experimental tests have shown that the field ploughing time efficiency coefficient is a useful metric for comparing field plots of different shapes and dimensions. This coefficient effectively describes tractor fuel consumption and CO2 emissions during ploughing operations on differently configured field plots. A reasonable method for calculating the real field ploughing time efficiency coefficient is based on field and tillage data and a practical determination method using tractor engine load reports. It was found that during the research, when ploughing six field plots of different shapes and dimensions, with an area of 6 ha, the field ploughing time efficiency coefficient varied from 0.68 to 0.82, and fuel consumption between 15.6 and 16.5 kg/ha. In the field plot of 6 ha, where the field ploughing time efficiency coefficient was 15% higher, the fuel consumption per unit area was lower by about 5.5%. The results of this study will help to effectively predict tillage time and tractor fuel consumption required for different field shapes and dimensions.\",\"PeriodicalId\":7846,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"29 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering5040148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering5040148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气候变化与二氧化碳排放有关,减少二氧化碳排放已成为当务之急。针对这些情况,科学家们必须不断开发新技术,提高燃油效率,减少排放。当今的农业以大小、形状和尺寸各异的耕地为主,要达到燃油经济性和环境影响的要求,仅了解优化耕作过程的原理是不够的,还必须了解耕地大小、形状和尺寸对耕作性能的影响。本研究的目的是提出一种方法,用于预测在不同形状和尺寸的田块上耕地时拖拉机单位耕地面积的燃料需求量和二氧化碳排放量,并确认一个适合这种预测的变量。理论计算和实验测试表明,田间犁地时间效率系数是比较不同形状和尺寸田块的有用指标。该系数有效地描述了在不同配置的田块上进行犁地作业时拖拉机的燃料消耗和二氧化碳排放量。计算实际田间犁地时间效率系数的合理方法是基于田间和耕作数据,以及使用拖拉机发动机负荷报告的实用测定方法。研究发现,在耕作面积为 6 公顷的 6 块不同形状和尺寸的田块时,田间耕作时间效率系数在 0.68 至 0.82 之间变化,耗油量在 15.6 至 16.5 公斤/公顷之间变化。在 6 公顷的田块中,田间耕作时间效率系数提高了 15%,单位面积的燃料消耗量降低了约 5.5%。这项研究的结果将有助于有效预测不同田块形状和面积所需的耕作时间和拖拉机燃料消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation of Criteria for Predicting Tractor Fuel Consumption and CO2 Emissions When Ploughing Fields of Different Shapes and Dimensions
Climate change is linked to CO2 emissions, the reduction of which has become a top priority. In response to these circumstances, scientists must constantly develop new technologies that increase fuel efficiency and reduce emissions. Agriculture today is dominated by arable fields of various sizes, shapes, and dimensions, and to achieve fuel economy and environmental impact requirements, it is not enough to know only the principles of optimization of tillage processes; it is also necessary to understand the influence of field size and its shape and dimensions on tillage performance. The purpose of this research is to present a methodology that allows predicting tractor fuel demand and CO2 emissions per unit of ploughed area when ploughing field plots with different shapes and dimensions and to confirm a suitable variable for such a prediction. Theoretical calculations and experimental tests have shown that the field ploughing time efficiency coefficient is a useful metric for comparing field plots of different shapes and dimensions. This coefficient effectively describes tractor fuel consumption and CO2 emissions during ploughing operations on differently configured field plots. A reasonable method for calculating the real field ploughing time efficiency coefficient is based on field and tillage data and a practical determination method using tractor engine load reports. It was found that during the research, when ploughing six field plots of different shapes and dimensions, with an area of 6 ha, the field ploughing time efficiency coefficient varied from 0.68 to 0.82, and fuel consumption between 15.6 and 16.5 kg/ha. In the field plot of 6 ha, where the field ploughing time efficiency coefficient was 15% higher, the fuel consumption per unit area was lower by about 5.5%. The results of this study will help to effectively predict tillage time and tractor fuel consumption required for different field shapes and dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Engineering Method for Improving Air Quality of Cage-Free Hen Housing Optimizing Deep Learning Algorithms for Effective Chicken Tracking through Image Processing Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV Usability Testing of Novel IoT-Infused Digital Services on Farm Equipment Reveals Farmer’s Requirements towards Future Human–Machine Interface Design Guidelines Chemical Control of Coffee Berry Borer Using Unmanned Aerial Vehicle under Different Operating Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1