N. Yudin, Victor Dyomin, Alexander Gribenyukov, Oleg Antipov, Andrei Khudoley, I. Kinyaevskiy, Mikhail Zinovev, S. Podzyvalov, V. Kuznetsov, E. Slyunko, Alexey Lysenko, A. Kalsin, I. Eranov, H. Baalbaki
{"title":"2.1 μm 周期性脉冲激光辐照下 ZGP 单晶体激光诱导损伤的物理和技术问题","authors":"N. Yudin, Victor Dyomin, Alexander Gribenyukov, Oleg Antipov, Andrei Khudoley, I. Kinyaevskiy, Mikhail Zinovev, S. Podzyvalov, V. Kuznetsov, E. Slyunko, Alexey Lysenko, A. Kalsin, I. Eranov, H. Baalbaki","doi":"10.3390/photonics10121364","DOIUrl":null,"url":null,"abstract":"The nonlinear properties of zinc germanium diphosphide (ZGP) crystals enable their applications in powerful mid-IR optical parametric oscillators and second-harmonic generators. This paper summarizes the mechanisms of the laser-induced damage (LID) of high-purity ZGP crystals under periodically pulsed nanosecond irradiation by a Ho3+:YAG laser at 2.1 μm. The ZGP samples were manufactured by “LOC” Ent., Tomsk, Russia, or the Harbin Institute of Technology, China. The impact of processing techniques and the post-growing methods for polishing and anti-reflective coatings on the LID threshold are discussed. The importance of the defect structure of the crystal lattice and the parameters of transparent coatings for increasing the LID threshold are also discussed. The impact of the test laser parameters on the LID threshold and the transient area near the LID threshold obtained using digital holography are analyzed. The influence of the pre-damage processes on the optical parametric oscillations is reported. Lastly, the prospects for improving ZGP crystals to further increase the LID threshold are discussed.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"55 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical and Technological Aspects of Laser-Induced Damage of ZGP Single Crystals under Periodically Pulsed Laser Irradiation at 2.1 μm\",\"authors\":\"N. Yudin, Victor Dyomin, Alexander Gribenyukov, Oleg Antipov, Andrei Khudoley, I. Kinyaevskiy, Mikhail Zinovev, S. Podzyvalov, V. Kuznetsov, E. Slyunko, Alexey Lysenko, A. Kalsin, I. Eranov, H. Baalbaki\",\"doi\":\"10.3390/photonics10121364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear properties of zinc germanium diphosphide (ZGP) crystals enable their applications in powerful mid-IR optical parametric oscillators and second-harmonic generators. This paper summarizes the mechanisms of the laser-induced damage (LID) of high-purity ZGP crystals under periodically pulsed nanosecond irradiation by a Ho3+:YAG laser at 2.1 μm. The ZGP samples were manufactured by “LOC” Ent., Tomsk, Russia, or the Harbin Institute of Technology, China. The impact of processing techniques and the post-growing methods for polishing and anti-reflective coatings on the LID threshold are discussed. The importance of the defect structure of the crystal lattice and the parameters of transparent coatings for increasing the LID threshold are also discussed. The impact of the test laser parameters on the LID threshold and the transient area near the LID threshold obtained using digital holography are analyzed. The influence of the pre-damage processes on the optical parametric oscillations is reported. Lastly, the prospects for improving ZGP crystals to further increase the LID threshold are discussed.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics10121364\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121364","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
二磷化锌锗(ZGP)晶体的非线性特性使其能够应用于功能强大的中红外光参量振荡器和二次谐波发生器。本文总结了高纯度 ZGP 晶体在 2.1 μm 的 Ho3+:YAG 激光周期性脉冲纳秒辐照下的激光诱导损伤(LID)机理。ZGP 样品由俄罗斯托木斯克的 "LOC "公司或中国哈尔滨工业大学制造。讨论了加工技术以及抛光和抗反射涂层的后生长方法对 LID 临界值的影响。此外,还讨论了晶格缺陷结构和透明涂层参数对提高激光阈值的重要性。分析了测试激光参数对 LID 门限的影响,以及使用数字全息技术获得的 LID 门限附近的瞬态区域。报告了预损伤过程对光参量振荡的影响。最后,讨论了改进 ZGP 晶体以进一步提高 LID 门限的前景。
Physical and Technological Aspects of Laser-Induced Damage of ZGP Single Crystals under Periodically Pulsed Laser Irradiation at 2.1 μm
The nonlinear properties of zinc germanium diphosphide (ZGP) crystals enable their applications in powerful mid-IR optical parametric oscillators and second-harmonic generators. This paper summarizes the mechanisms of the laser-induced damage (LID) of high-purity ZGP crystals under periodically pulsed nanosecond irradiation by a Ho3+:YAG laser at 2.1 μm. The ZGP samples were manufactured by “LOC” Ent., Tomsk, Russia, or the Harbin Institute of Technology, China. The impact of processing techniques and the post-growing methods for polishing and anti-reflective coatings on the LID threshold are discussed. The importance of the defect structure of the crystal lattice and the parameters of transparent coatings for increasing the LID threshold are also discussed. The impact of the test laser parameters on the LID threshold and the transient area near the LID threshold obtained using digital holography are analyzed. The influence of the pre-damage processes on the optical parametric oscillations is reported. Lastly, the prospects for improving ZGP crystals to further increase the LID threshold are discussed.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.