九极径向磁悬浮轴承的设计与无偏控制

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2023-12-09 DOI:10.3390/act12120458
Myounggyu D. Noh, Wonjin Jeong
{"title":"九极径向磁悬浮轴承的设计与无偏控制","authors":"Myounggyu D. Noh, Wonjin Jeong","doi":"10.3390/act12120458","DOIUrl":null,"url":null,"abstract":"Typical radial active magnetic bearings are structurally symmetric. For example, an eight-pole bearing uses two opposing pairs to control one axis by winding the pair in series. The magnetic force produced by an active magnetic bearing is quadratically proportional to coil currents and inversely proportional to the square of the gap between the bearing and the journal. Bias linearization is widely used to linearize the relationship of coil currents to the magnetic force. However, the bias currents increase ohmic losses and require a larger than necessary capacity of power amplifiers to supply the sum of bias and control currents. Unbiased control of symmetric bearings has the critical issue of slew-rate limiting. Unbiased control of unsymmetrical bearings can eliminate the need for bias currents while avoiding slew-rate singularity except in extreme cases. Although a generalized inversion of the force–current relationship of unbiased unsymmetrical bearings has been proposed previously, no experimental validation is reported. The main objective of this research is to implement the unbiased control strategy and show that exactly the same linear control strategy for eight-pole symmetric bearings can be applied to nine-pole unsymmetrical bearings on industry-scale compressor test rigs. Two test rigs are built: one with eight-pole symmetric bearings and another with nine-pole unsymmetrical bearings. Linear control algorithms are designed and applied. Both control algorithms are linear and consist of lead filters and notch filters. The test results show that the linear control design used for unsymmetrical bearings can achieve the same level of stability that the symmetric bearings provide, satisfying the sensitivity criterion specified by ISO 14839-3.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"258 ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Unbiased Control of Nine-Pole Radial Magnetic Bearing\",\"authors\":\"Myounggyu D. Noh, Wonjin Jeong\",\"doi\":\"10.3390/act12120458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical radial active magnetic bearings are structurally symmetric. For example, an eight-pole bearing uses two opposing pairs to control one axis by winding the pair in series. The magnetic force produced by an active magnetic bearing is quadratically proportional to coil currents and inversely proportional to the square of the gap between the bearing and the journal. Bias linearization is widely used to linearize the relationship of coil currents to the magnetic force. However, the bias currents increase ohmic losses and require a larger than necessary capacity of power amplifiers to supply the sum of bias and control currents. Unbiased control of symmetric bearings has the critical issue of slew-rate limiting. Unbiased control of unsymmetrical bearings can eliminate the need for bias currents while avoiding slew-rate singularity except in extreme cases. Although a generalized inversion of the force–current relationship of unbiased unsymmetrical bearings has been proposed previously, no experimental validation is reported. The main objective of this research is to implement the unbiased control strategy and show that exactly the same linear control strategy for eight-pole symmetric bearings can be applied to nine-pole unsymmetrical bearings on industry-scale compressor test rigs. Two test rigs are built: one with eight-pole symmetric bearings and another with nine-pole unsymmetrical bearings. Linear control algorithms are designed and applied. Both control algorithms are linear and consist of lead filters and notch filters. The test results show that the linear control design used for unsymmetrical bearings can achieve the same level of stability that the symmetric bearings provide, satisfying the sensitivity criterion specified by ISO 14839-3.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":\"258 \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act12120458\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120458","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

典型的径向有源磁轴承在结构上是对称的。例如,八极轴承使用两个相对的磁对,通过串联绕组来控制一个轴。有源磁轴承产生的磁力与线圈电流成二次方,与轴承和轴颈之间间隙的平方成反比。偏置线性化被广泛用于线性化线圈电流与磁力的关系。然而,偏置电流会增加欧姆损耗,并要求功率放大器的容量大于提供偏置电流和控制电流总和所需的容量。对称轴承的非偏置控制存在回转速率限制这一关键问题。非对称轴承的非偏置控制可以消除对偏置电流的需求,同时避免回转速率奇异(极端情况除外)。虽然之前有人提出了非偏置非对称轴承力-电流关系的广义反转,但没有实验验证的报道。本研究的主要目的是在工业规模的压缩机试验台上实施无偏控制策略,并证明八极对称轴承的线性控制策略可以完全适用于九极非对称轴承。我们搭建了两个试验台:一个装有八极对称轴承,另一个装有九极不对称轴承。设计并应用了线性控制算法。这两种控制算法都是线性的,由前导滤波器和陷波滤波器组成。测试结果表明,用于非对称轴承的线性控制设计可以达到与对称轴承相同的稳定性水平,满足 ISO 14839-3 规定的灵敏度标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Unbiased Control of Nine-Pole Radial Magnetic Bearing
Typical radial active magnetic bearings are structurally symmetric. For example, an eight-pole bearing uses two opposing pairs to control one axis by winding the pair in series. The magnetic force produced by an active magnetic bearing is quadratically proportional to coil currents and inversely proportional to the square of the gap between the bearing and the journal. Bias linearization is widely used to linearize the relationship of coil currents to the magnetic force. However, the bias currents increase ohmic losses and require a larger than necessary capacity of power amplifiers to supply the sum of bias and control currents. Unbiased control of symmetric bearings has the critical issue of slew-rate limiting. Unbiased control of unsymmetrical bearings can eliminate the need for bias currents while avoiding slew-rate singularity except in extreme cases. Although a generalized inversion of the force–current relationship of unbiased unsymmetrical bearings has been proposed previously, no experimental validation is reported. The main objective of this research is to implement the unbiased control strategy and show that exactly the same linear control strategy for eight-pole symmetric bearings can be applied to nine-pole unsymmetrical bearings on industry-scale compressor test rigs. Two test rigs are built: one with eight-pole symmetric bearings and another with nine-pole unsymmetrical bearings. Linear control algorithms are designed and applied. Both control algorithms are linear and consist of lead filters and notch filters. The test results show that the linear control design used for unsymmetrical bearings can achieve the same level of stability that the symmetric bearings provide, satisfying the sensitivity criterion specified by ISO 14839-3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments Design and Control of a Reconfigurable Robot with Rolling and Flying Locomotion Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1