利用 GoogleNet 检测害虫的卷积神经网络算法

I. Yulita, Muhamad Farid Ridho Rambe, A. Sholahuddin, A. S. Prabuwono
{"title":"利用 GoogleNet 检测害虫的卷积神经网络算法","authors":"I. Yulita, Muhamad Farid Ridho Rambe, A. Sholahuddin, A. S. Prabuwono","doi":"10.3390/agriengineering5040145","DOIUrl":null,"url":null,"abstract":"The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convolutional Neural Network Algorithm for Pest Detection Using GoogleNet\",\"authors\":\"I. Yulita, Muhamad Farid Ridho Rambe, A. Sholahuddin, A. S. Prabuwono\",\"doi\":\"10.3390/agriengineering5040145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run.\",\"PeriodicalId\":7846,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering5040145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering5040145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减少生产力损失的主要策略是及时、准确、高效地检测植物害虫。虽然人工检测对发现某些害虫很有用,但与机器学习等自动化方法相比,人工检测通常较为缓慢。因此,本研究采用了卷积神经网络(CNN)模型,特别是 GoogleNet,来检测移动应用中的害虫。检测技术包括输入描绘植物害虫的图像,然后对图像进行进一步处理。这项研究采用了多种实验方法来确定最有效的模型。在本次调查中,准确率高达 93.78% 的模型脱颖而出,成为最优秀的模型。上述模型已被纳入一个智能手机应用程序,目的是帮助印尼农民识别影响其农作物的害虫。印尼语应用程序的实施是对本研究的贡献。使用印尼语使印尼农民更容易使用。预计该应用程序将对印尼农民产生重大潜在影响。通过提高害虫识别能力,农民可以采用更合适的害虫管理策略,从而从长远来看提高作物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Convolutional Neural Network Algorithm for Pest Detection Using GoogleNet
The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Engineering Method for Improving Air Quality of Cage-Free Hen Housing Optimizing Deep Learning Algorithms for Effective Chicken Tracking through Image Processing Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV Usability Testing of Novel IoT-Infused Digital Services on Farm Equipment Reveals Farmer’s Requirements towards Future Human–Machine Interface Design Guidelines Chemical Control of Coffee Berry Borer Using Unmanned Aerial Vehicle under Different Operating Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1