Xueshen Wu , Chao Wang , Depeng Wang , Ahmed Tawfik , Ronghua Xu , Zhong Yu , Fangang Meng
{"title":"通过厌氧膜生物反应器和流动生物膜反应器的综合工艺实现碳和氮的同步去除","authors":"Xueshen Wu , Chao Wang , Depeng Wang , Ahmed Tawfik , Ronghua Xu , Zhong Yu , Fangang Meng","doi":"10.1016/j.engmic.2023.100136","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.4% with influent ammonium (NH<sub>4</sub><sup>+</sup>-N) concentrations of approximately 200 and 500 mg/L, respectively. The COD removal efficiencies were higher than 98.0% during the entire operation. Mass balance analysis showed that COD and TN were mainly removed by the AnMBR and FTBR/CANON, respectively. The anammox process was the main nitrogen removal pathway in the combined system, with a contribution of over 80%. High functional bacterial activity was observed in the combined system. Particularly, an increase in the NH<sub>4</sub><sup>+</sup>-N concentration considerably improved the anammox activity of the biofilm in the FTBR/CANON. 16S rRNA high-throughput sequencing revealed that <em>Methanosaeta, Candidatus Methanofastidiosum</em>, and <em>Methanobacterium</em> were the dominant methanogens in the AnMBR granular sludge. In the CANON biofilm, <em>Nitrosomonas</em> and <em>Candidatus</em> Kuenenia were identified as aerobic and anaerobic ammonium-oxidizing bacteria, respectively. In summary, this study proposes a combined AnMBR and FTBR/CANON process targeting COD and nitrogen removal, and provides a potential alternative for treating high-strength wastewater.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000681/pdfft?md5=8afe17500f65f7f5888c34f6b953307b&pid=1-s2.0-S2667370323000681-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Achieving simultaneous removal of carbon and nitrogen by an integrated process of anaerobic membrane bioreactor and flow-through biofilm reactor\",\"authors\":\"Xueshen Wu , Chao Wang , Depeng Wang , Ahmed Tawfik , Ronghua Xu , Zhong Yu , Fangang Meng\",\"doi\":\"10.1016/j.engmic.2023.100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.4% with influent ammonium (NH<sub>4</sub><sup>+</sup>-N) concentrations of approximately 200 and 500 mg/L, respectively. The COD removal efficiencies were higher than 98.0% during the entire operation. Mass balance analysis showed that COD and TN were mainly removed by the AnMBR and FTBR/CANON, respectively. The anammox process was the main nitrogen removal pathway in the combined system, with a contribution of over 80%. High functional bacterial activity was observed in the combined system. Particularly, an increase in the NH<sub>4</sub><sup>+</sup>-N concentration considerably improved the anammox activity of the biofilm in the FTBR/CANON. 16S rRNA high-throughput sequencing revealed that <em>Methanosaeta, Candidatus Methanofastidiosum</em>, and <em>Methanobacterium</em> were the dominant methanogens in the AnMBR granular sludge. In the CANON biofilm, <em>Nitrosomonas</em> and <em>Candidatus</em> Kuenenia were identified as aerobic and anaerobic ammonium-oxidizing bacteria, respectively. In summary, this study proposes a combined AnMBR and FTBR/CANON process targeting COD and nitrogen removal, and provides a potential alternative for treating high-strength wastewater.</p></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"4 1\",\"pages\":\"Article 100136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667370323000681/pdfft?md5=8afe17500f65f7f5888c34f6b953307b&pid=1-s2.0-S2667370323000681-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370323000681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving simultaneous removal of carbon and nitrogen by an integrated process of anaerobic membrane bioreactor and flow-through biofilm reactor
In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.4% with influent ammonium (NH4+-N) concentrations of approximately 200 and 500 mg/L, respectively. The COD removal efficiencies were higher than 98.0% during the entire operation. Mass balance analysis showed that COD and TN were mainly removed by the AnMBR and FTBR/CANON, respectively. The anammox process was the main nitrogen removal pathway in the combined system, with a contribution of over 80%. High functional bacterial activity was observed in the combined system. Particularly, an increase in the NH4+-N concentration considerably improved the anammox activity of the biofilm in the FTBR/CANON. 16S rRNA high-throughput sequencing revealed that Methanosaeta, Candidatus Methanofastidiosum, and Methanobacterium were the dominant methanogens in the AnMBR granular sludge. In the CANON biofilm, Nitrosomonas and Candidatus Kuenenia were identified as aerobic and anaerobic ammonium-oxidizing bacteria, respectively. In summary, this study proposes a combined AnMBR and FTBR/CANON process targeting COD and nitrogen removal, and provides a potential alternative for treating high-strength wastewater.