热解生活污水污泥:工艺参数对生物炭热值的影响

IF 1.1 Q3 ENGINEERING, CIVIL Civil and Environmental Engineering Pub Date : 2023-12-01 DOI:10.2478/cee-2023-0058
H. Al-Hamaiedeh, S. Aljbour, T. El-Hasan, Tuqa Almrayat, Ziad Al-Ghazawi
{"title":"热解生活污水污泥:工艺参数对生物炭热值的影响","authors":"H. Al-Hamaiedeh, S. Aljbour, T. El-Hasan, Tuqa Almrayat, Ziad Al-Ghazawi","doi":"10.2478/cee-2023-0058","DOIUrl":null,"url":null,"abstract":"Abstract This research aims to look into a sustainable technique for the treatment, reuse and disposal of domestic sewage sludge (DSS). The purpose of the study was to examine the operating factors that influence the calorific value of the produced biochar from the pyrolysis of DSS. Based on the analysis of the full factorial design, the impacts of the pyrolysis conditions, specifically: temperature, heating rate, and isothermal time on the calorific value of biochar were evaluated. When the pyrolysis temperature was raised from 300 to 500 oC, the calorific value of biochar was decreased by 34%. A 14% decrease in the calorific content of the biochar was also noticed when the heating rate was increased from 5 to 35 oC/min. When the isothermal time was increased from 45 to 120 minutes, the calorific value of the biochar remained essentially unchanged. No interaction effects among process variables were found using the factorial design methodology. A first-order regression model was developed to predict the calorific value of biochar using the magnitude of the effects of the process factors and their interactions. The model predictions agreed very well with the obtained experimental results.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis of Domestic Sewage Sludge: Effect of Process Parameters on Biochar Calorific Value\",\"authors\":\"H. Al-Hamaiedeh, S. Aljbour, T. El-Hasan, Tuqa Almrayat, Ziad Al-Ghazawi\",\"doi\":\"10.2478/cee-2023-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research aims to look into a sustainable technique for the treatment, reuse and disposal of domestic sewage sludge (DSS). The purpose of the study was to examine the operating factors that influence the calorific value of the produced biochar from the pyrolysis of DSS. Based on the analysis of the full factorial design, the impacts of the pyrolysis conditions, specifically: temperature, heating rate, and isothermal time on the calorific value of biochar were evaluated. When the pyrolysis temperature was raised from 300 to 500 oC, the calorific value of biochar was decreased by 34%. A 14% decrease in the calorific content of the biochar was also noticed when the heating rate was increased from 5 to 35 oC/min. When the isothermal time was increased from 45 to 120 minutes, the calorific value of the biochar remained essentially unchanged. No interaction effects among process variables were found using the factorial design methodology. A first-order regression model was developed to predict the calorific value of biochar using the magnitude of the effects of the process factors and their interactions. The model predictions agreed very well with the obtained experimental results.\",\"PeriodicalId\":42034,\"journal\":{\"name\":\"Civil and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cee-2023-0058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2023-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究旨在探讨一种处理、再利用和处置生活污水污泥(DSS)的可持续技术。研究的目的是考察影响热解 DSS 产生的生物炭热值的操作因素。根据全因子设计分析,评估了热解条件,特别是温度、加热速率和等温时间对生物炭热值的影响。当热解温度从 300 摄氏度升至 500 摄氏度时,生物炭的热值降低了 34%。当加热速度从 5 oC/min 提高到 35 oC/min 时,生物炭的热值也降低了 14%。当等温时间从 45 分钟增加到 120 分钟时,生物炭的热值基本保持不变。使用因子设计方法没有发现工艺变量之间的交互效应。利用工艺因素及其相互作用的影响大小,建立了一个一阶回归模型来预测生物炭的热值。模型预测结果与实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pyrolysis of Domestic Sewage Sludge: Effect of Process Parameters on Biochar Calorific Value
Abstract This research aims to look into a sustainable technique for the treatment, reuse and disposal of domestic sewage sludge (DSS). The purpose of the study was to examine the operating factors that influence the calorific value of the produced biochar from the pyrolysis of DSS. Based on the analysis of the full factorial design, the impacts of the pyrolysis conditions, specifically: temperature, heating rate, and isothermal time on the calorific value of biochar were evaluated. When the pyrolysis temperature was raised from 300 to 500 oC, the calorific value of biochar was decreased by 34%. A 14% decrease in the calorific content of the biochar was also noticed when the heating rate was increased from 5 to 35 oC/min. When the isothermal time was increased from 45 to 120 minutes, the calorific value of the biochar remained essentially unchanged. No interaction effects among process variables were found using the factorial design methodology. A first-order regression model was developed to predict the calorific value of biochar using the magnitude of the effects of the process factors and their interactions. The model predictions agreed very well with the obtained experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
58.30%
发文量
69
期刊最新文献
Tensile Force Distribution And Development Within Geogrid-Reinforced Retaining Wall Evaluation of Bituminous Moisture Damage of High Silica Aggregate Research on the Long-Term Acoustic Efficiency of Asphalt Mixtures Using CRM in Test Sections of Slovak Roads Using Tuff and Limestone Sand to Minimize Water Consumption of Pavement Construction in Arid Regions Role of Real Estate Management Firms Toward Sustainability in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1