Sampa Sahoo , Kshira Sagar Sahoo , Bibhudatta Sahoo , Amir H. Gandomi
{"title":"基于学习自动机的物联网智能城市边缘资源分配方法","authors":"Sampa Sahoo , Kshira Sagar Sahoo , Bibhudatta Sahoo , Amir H. Gandomi","doi":"10.1016/j.dcan.2023.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>The development of the Internet of Things (IoT) technology is leading to a new era of smart applications such as smart transportation, buildings, and smart homes. Moreover, these applications act as the building blocks of IoT-enabled smart cities. The high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for processing. However, there is a high computation latency due to the presence of a remote cloud server. Edge computing, which brings the computation close to the data source is introduced to overcome this problem. In an IoT-enabled smart city environment, one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay constraint. An efficient resource allocation at the edge is helpful to address this issue. In this paper, an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation problem. First, we presented a three-layer network architecture for IoT-enabled smart cities. Then, we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization problem. Learning Automata (LA) is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource mapping. An extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 5","pages":"Pages 1258-1266"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A learning automata based edge resource allocation approach for IoT-enabled smart cities\",\"authors\":\"Sampa Sahoo , Kshira Sagar Sahoo , Bibhudatta Sahoo , Amir H. Gandomi\",\"doi\":\"10.1016/j.dcan.2023.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of the Internet of Things (IoT) technology is leading to a new era of smart applications such as smart transportation, buildings, and smart homes. Moreover, these applications act as the building blocks of IoT-enabled smart cities. The high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for processing. However, there is a high computation latency due to the presence of a remote cloud server. Edge computing, which brings the computation close to the data source is introduced to overcome this problem. In an IoT-enabled smart city environment, one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay constraint. An efficient resource allocation at the edge is helpful to address this issue. In this paper, an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation problem. First, we presented a three-layer network architecture for IoT-enabled smart cities. Then, we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization problem. Learning Automata (LA) is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource mapping. An extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 5\",\"pages\":\"Pages 1258-1266\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001736\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001736","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
物联网(IoT)技术的发展正在引领智能交通、楼宇和智能家居等智能应用进入新时代。此外,这些应用还是物联网智能城市的基石。各种智慧城市应用产生的大量高速数据被发送到灵活高效的云计算资源进行处理。然而,由于远程云服务器的存在,计算延迟较高。为了解决这个问题,我们引入了边缘计算,它能使计算接近数据源。在启用了物联网的智慧城市环境中,主要关注点之一是在执行满足延迟约束的任务时消耗最少的能源。边缘的高效资源分配有助于解决这一问题。本文将智能城市环境中的能量和延迟最小化问题表述为一个双目标边缘资源分配问题。首先,我们介绍了物联网智能城市的三层网络架构。然后,考虑到三层网络架构,我们设计了一种基于学习自动机的边缘资源分配方法,以解决上述双目标最小化问题。学习自动机(LA)是一种基于强化的自适应决策制定器,有助于找到最佳任务和边缘资源映射。为了证明基于 LA 的方法在物联网智能城市环境中的适用性和有效性,我们进行了大量的模拟。
A learning automata based edge resource allocation approach for IoT-enabled smart cities
The development of the Internet of Things (IoT) technology is leading to a new era of smart applications such as smart transportation, buildings, and smart homes. Moreover, these applications act as the building blocks of IoT-enabled smart cities. The high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for processing. However, there is a high computation latency due to the presence of a remote cloud server. Edge computing, which brings the computation close to the data source is introduced to overcome this problem. In an IoT-enabled smart city environment, one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay constraint. An efficient resource allocation at the edge is helpful to address this issue. In this paper, an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation problem. First, we presented a three-layer network architecture for IoT-enabled smart cities. Then, we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization problem. Learning Automata (LA) is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource mapping. An extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.