加速酶和通路原型开发的无细胞系统和基因生物传感器

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2023-12-10 DOI:10.1016/j.coisb.2023.100501
Wonhee Kim , Sohun Lee , Bong Hyun Sung , Jeong-Geol Na , Jeong Wook Lee
{"title":"加速酶和通路原型开发的无细胞系统和基因生物传感器","authors":"Wonhee Kim ,&nbsp;Sohun Lee ,&nbsp;Bong Hyun Sung ,&nbsp;Jeong-Geol Na ,&nbsp;Jeong Wook Lee","doi":"10.1016/j.coisb.2023.100501","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Integration of cell-free systems with genetic biosensors is emerging as an advantageous platform for </span>small molecule<span> detection. This biosensor-coupled cell-free system simplifies an assay-and-detection procedure by combining the advantages of rapid and efficient protein expression through a cell-free system and the </span></span><em>in situ</em><span> detection capabilities provided by genetic biosensors. Moreover, this system is easy to assay multiple conditions at once, as the open environment of the cell-free systems enhances overall ease of handling. In this review, we focus on the acceleration of enzyme<span> and pathway prototyping using cell-free biosensors, as well as strategies to improve the sensitivity and specificity of biosensors. High-throughput screening tools that can expand the prototyping process by generating massive data sets for rapid evaluation were also described.</span></span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-free systems and genetic biosensors for accelerating enzyme and pathway prototyping\",\"authors\":\"Wonhee Kim ,&nbsp;Sohun Lee ,&nbsp;Bong Hyun Sung ,&nbsp;Jeong-Geol Na ,&nbsp;Jeong Wook Lee\",\"doi\":\"10.1016/j.coisb.2023.100501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Integration of cell-free systems with genetic biosensors is emerging as an advantageous platform for </span>small molecule<span> detection. This biosensor-coupled cell-free system simplifies an assay-and-detection procedure by combining the advantages of rapid and efficient protein expression through a cell-free system and the </span></span><em>in situ</em><span> detection capabilities provided by genetic biosensors. Moreover, this system is easy to assay multiple conditions at once, as the open environment of the cell-free systems enhances overall ease of handling. In this review, we focus on the acceleration of enzyme<span> and pathway prototyping using cell-free biosensors, as well as strategies to improve the sensitivity and specificity of biosensors. High-throughput screening tools that can expand the prototyping process by generating massive data sets for rapid evaluation were also described.</span></span></p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无细胞系统与基因生物传感器的整合正在成为小分子检测的有利平台。这种生物传感器耦合无细胞系统结合了无细胞系统快速高效表达蛋白质的优势和基因生物传感器提供的原位检测能力,简化了化验和检测程序。此外,由于无细胞系统的开放环境提高了整体操作的简便性,因此该系统易于同时检测多种条件。在本综述中,我们将重点讨论利用无细胞生物传感器加速酶和通路原型开发,以及提高生物传感器灵敏度和特异性的策略。此外还介绍了高通量筛选工具,这些工具可以通过生成大量数据集来快速评估,从而扩展原型开发过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell-free systems and genetic biosensors for accelerating enzyme and pathway prototyping

Integration of cell-free systems with genetic biosensors is emerging as an advantageous platform for small molecule detection. This biosensor-coupled cell-free system simplifies an assay-and-detection procedure by combining the advantages of rapid and efficient protein expression through a cell-free system and the in situ detection capabilities provided by genetic biosensors. Moreover, this system is easy to assay multiple conditions at once, as the open environment of the cell-free systems enhances overall ease of handling. In this review, we focus on the acceleration of enzyme and pathway prototyping using cell-free biosensors, as well as strategies to improve the sensitivity and specificity of biosensors. High-throughput screening tools that can expand the prototyping process by generating massive data sets for rapid evaluation were also described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1