用于 IRS 辅助无人机隐蔽通信的深度强化学习

IF 3.1 3区 计算机科学 Q2 TELECOMMUNICATIONS China Communications Pub Date : 2023-12-01 DOI:10.23919/JCC.ea.2022-0336.202302
Songjiao Bi, Langtao Hu, QUAN LIU, Jianlan Wu, Rui Yang, L. Wu
{"title":"用于 IRS 辅助无人机隐蔽通信的深度强化学习","authors":"Songjiao Bi, Langtao Hu, QUAN LIU, Jianlan Wu, Rui Yang, L. Wu","doi":"10.23919/JCC.ea.2022-0336.202302","DOIUrl":null,"url":null,"abstract":"Covert communications can hide the existence of a transmission from the transmitter to receiver. This paper considers an intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) covert communication system. It was inspired by the high-dimensional data processing and decision-making capabilities of the deep reinforcement learning (DRL) algorithm. In order to improve the covert communication performance, an UAV 3D trajectory and IRS phase optimization algorithm based on double deep Q network (TAP-DDQN) is proposed. The simulations show that TAP-DDQN can significantly improve the covert performance of the IRS-assisted UAV covert communication system, compared with benchmark solutions.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"329 ","pages":"131-141"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning for IRS-assisted UAV covert communications\",\"authors\":\"Songjiao Bi, Langtao Hu, QUAN LIU, Jianlan Wu, Rui Yang, L. Wu\",\"doi\":\"10.23919/JCC.ea.2022-0336.202302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covert communications can hide the existence of a transmission from the transmitter to receiver. This paper considers an intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) covert communication system. It was inspired by the high-dimensional data processing and decision-making capabilities of the deep reinforcement learning (DRL) algorithm. In order to improve the covert communication performance, an UAV 3D trajectory and IRS phase optimization algorithm based on double deep Q network (TAP-DDQN) is proposed. The simulations show that TAP-DDQN can significantly improve the covert performance of the IRS-assisted UAV covert communication system, compared with benchmark solutions.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"329 \",\"pages\":\"131-141\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.ea.2022-0336.202302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.ea.2022-0336.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

隐蔽通信可以隐藏从发射器到接收器之间存在的传输。本文探讨了一种智能反射面(IRS)辅助无人机(UAV)隐蔽通信系统。该系统的灵感来自于深度强化学习(DRL)算法的高维数据处理和决策能力。为了提高隐蔽通信性能,提出了一种基于双深度 Q 网络(TAP-DDQN)的无人机三维轨迹和 IRS 相位优化算法。模拟结果表明,与基准方案相比,TAP-DDQN 可以显著提高 IRS 辅助无人机隐蔽通信系统的隐蔽性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep reinforcement learning for IRS-assisted UAV covert communications
Covert communications can hide the existence of a transmission from the transmitter to receiver. This paper considers an intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) covert communication system. It was inspired by the high-dimensional data processing and decision-making capabilities of the deep reinforcement learning (DRL) algorithm. In order to improve the covert communication performance, an UAV 3D trajectory and IRS phase optimization algorithm based on double deep Q network (TAP-DDQN) is proposed. The simulations show that TAP-DDQN can significantly improve the covert performance of the IRS-assisted UAV covert communication system, compared with benchmark solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
China Communications
China Communications 工程技术-电信学
CiteScore
8.00
自引率
12.20%
发文量
2868
审稿时长
8.6 months
期刊介绍: China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide. The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology. China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.
期刊最新文献
Secure short-packet transmission in uplink massive MU-MIMO assisted URLLC under imperfect CSI IoV and blockchain-enabled driving guidance strategy in complex traffic environment Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization An overview of interactive immersive services Performance analysis in SWIPT-based bidirectional D2D communications in cellular networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1