最佳-最差离散选择实验的数据管理和技术

Farahnaz Islam, James F. Thrasher, Feifei Xiao, Robert R. Moran, James W. Hardin
{"title":"最佳-最差离散选择实验的数据管理和技术","authors":"Farahnaz Islam, James F. Thrasher, Feifei Xiao, Robert R. Moran, James W. Hardin","doi":"10.1177/1536867X231212437","DOIUrl":null,"url":null,"abstract":"In this article, we present software that is suitable for use with Stata’s choice modeling suite of commands, which begin with cm. Within the context of choice models, we focus on best–worst data. In such data, respondents are presented a set of choices and are required to select a best and a worst choice from among the alternatives. Optionally, respondents may indicate an opt-out choice, in which no best or worst choice exists in the choice set. Such data are simplified versions of experiments in which respondents rank all the choices. Once best–worst data are collected, there are specific types of data expansions that analysts use to take advantage of both explicit and implicit information. The commands described in this article support data expansion and model estimation.","PeriodicalId":437120,"journal":{"name":"The Stata Journal","volume":"425 1","pages":"1020 - 1044"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data management and techniques for best–worst discrete choice experiments\",\"authors\":\"Farahnaz Islam, James F. Thrasher, Feifei Xiao, Robert R. Moran, James W. Hardin\",\"doi\":\"10.1177/1536867X231212437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present software that is suitable for use with Stata’s choice modeling suite of commands, which begin with cm. Within the context of choice models, we focus on best–worst data. In such data, respondents are presented a set of choices and are required to select a best and a worst choice from among the alternatives. Optionally, respondents may indicate an opt-out choice, in which no best or worst choice exists in the choice set. Such data are simplified versions of experiments in which respondents rank all the choices. Once best–worst data are collected, there are specific types of data expansions that analysts use to take advantage of both explicit and implicit information. The commands described in this article support data expansion and model estimation.\",\"PeriodicalId\":437120,\"journal\":{\"name\":\"The Stata Journal\",\"volume\":\"425 1\",\"pages\":\"1020 - 1044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X231212437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867X231212437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将介绍适合与 Stata 的选择建模命令套件(以 cm 开头)一起使用的软件。在选择模型的范围内,我们主要关注最佳-最差数据。在此类数据中,受访者会看到一组选择,并需要从备选方案中选出一个最佳和一个最差的选择。受访者也可以选择 "退出",即在选择集中不存在最佳或最差选择。这些数据是受访者对所有选择进行排序的实验的简化版。一旦收集到最佳-最差数据,分析师就可以使用特定类型的数据扩展来利用显性和隐性信息。本文介绍的命令支持数据扩展和模型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data management and techniques for best–worst discrete choice experiments
In this article, we present software that is suitable for use with Stata’s choice modeling suite of commands, which begin with cm. Within the context of choice models, we focus on best–worst data. In such data, respondents are presented a set of choices and are required to select a best and a worst choice from among the alternatives. Optionally, respondents may indicate an opt-out choice, in which no best or worst choice exists in the choice set. Such data are simplified versions of experiments in which respondents rank all the choices. Once best–worst data are collected, there are specific types of data expansions that analysts use to take advantage of both explicit and implicit information. The commands described in this article support data expansion and model estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of A. Colin Cameron and Pravin K. Trivedi’s Microeconometrics Using Stata, Second Edition Speaking Stata: Finding the denominator: Minimum sample size from percentages The Stata Journal Editors’ Prize 2023: Fernando Rios-Avila Review of Alan Acock’s A Gentle Introduction to Stata, Revised Sixth Edition Simpler standard errors for two-stage optimization estimators revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1