{"title":"文本预处理还值得花时间吗?流行预处理方法对 Transformers 和传统分类器影响的比较调查","authors":"Marco Siino, Ilenia Tinnirello, Marco La Cascia","doi":"10.1016/j.is.2023.102342","DOIUrl":null,"url":null,"abstract":"<div><p>With the advent of the modern pre-trained Transformers, the text preprocessing has started to be neglected and not specifically addressed in recent NLP literature. However, both from a linguistic and from a computer science point of view, we believe that even when using modern Transformers, text preprocessing can significantly impact on the performance of a classification model. We want to investigate and compare, through this study, how preprocessing impacts on the Text Classification (TC) performance of modern and traditional classification models. We report and discuss the preprocessing techniques found in the literature and their most recent variants or applications to address TC tasks in different domains. In order to assess how much the preprocessing affects classification performance, we apply the three top referenced preprocessing techniques (alone or in combination) to four publicly available datasets from different domains. Then, nine machine learning models – including modern Transformers – get the preprocessed text as input. The results presented show that an educated choice on the text preprocessing strategy to employ should be based on the task as well as on the model considered. Outcomes in this survey show that choosing the best preprocessing technique – in place of the worst – can significantly improve accuracy on the classification (up to 25%, as in the case of an XLNet on the IMDB dataset). In some cases, by means of a suitable preprocessing strategy, even a simple Naïve Bayes classifier proved to outperform (i.e., by 2% in accuracy) the best performing Transformer. We found that Transformers and traditional models exhibit a higher impact of the preprocessing on the TC performance. Our main findings are: (1) also on modern pre-trained language models, preprocessing can affect performance, depending on the datasets and on the preprocessing technique or combination of techniques used, (2) in some cases, using a proper preprocessing strategy, simple models can outperform Transformers on TC tasks, (3) similar classes of models exhibit similar level of sensitivity to text preprocessing.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"121 ","pages":"Article 102342"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437923001783/pdfft?md5=f6a37c2a5b264959fc055b2613fb321e&pid=1-s2.0-S0306437923001783-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers\",\"authors\":\"Marco Siino, Ilenia Tinnirello, Marco La Cascia\",\"doi\":\"10.1016/j.is.2023.102342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the advent of the modern pre-trained Transformers, the text preprocessing has started to be neglected and not specifically addressed in recent NLP literature. However, both from a linguistic and from a computer science point of view, we believe that even when using modern Transformers, text preprocessing can significantly impact on the performance of a classification model. We want to investigate and compare, through this study, how preprocessing impacts on the Text Classification (TC) performance of modern and traditional classification models. We report and discuss the preprocessing techniques found in the literature and their most recent variants or applications to address TC tasks in different domains. In order to assess how much the preprocessing affects classification performance, we apply the three top referenced preprocessing techniques (alone or in combination) to four publicly available datasets from different domains. Then, nine machine learning models – including modern Transformers – get the preprocessed text as input. The results presented show that an educated choice on the text preprocessing strategy to employ should be based on the task as well as on the model considered. Outcomes in this survey show that choosing the best preprocessing technique – in place of the worst – can significantly improve accuracy on the classification (up to 25%, as in the case of an XLNet on the IMDB dataset). In some cases, by means of a suitable preprocessing strategy, even a simple Naïve Bayes classifier proved to outperform (i.e., by 2% in accuracy) the best performing Transformer. We found that Transformers and traditional models exhibit a higher impact of the preprocessing on the TC performance. Our main findings are: (1) also on modern pre-trained language models, preprocessing can affect performance, depending on the datasets and on the preprocessing technique or combination of techniques used, (2) in some cases, using a proper preprocessing strategy, simple models can outperform Transformers on TC tasks, (3) similar classes of models exhibit similar level of sensitivity to text preprocessing.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"121 \",\"pages\":\"Article 102342\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306437923001783/pdfft?md5=f6a37c2a5b264959fc055b2613fb321e&pid=1-s2.0-S0306437923001783-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437923001783\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437923001783","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers
With the advent of the modern pre-trained Transformers, the text preprocessing has started to be neglected and not specifically addressed in recent NLP literature. However, both from a linguistic and from a computer science point of view, we believe that even when using modern Transformers, text preprocessing can significantly impact on the performance of a classification model. We want to investigate and compare, through this study, how preprocessing impacts on the Text Classification (TC) performance of modern and traditional classification models. We report and discuss the preprocessing techniques found in the literature and their most recent variants or applications to address TC tasks in different domains. In order to assess how much the preprocessing affects classification performance, we apply the three top referenced preprocessing techniques (alone or in combination) to four publicly available datasets from different domains. Then, nine machine learning models – including modern Transformers – get the preprocessed text as input. The results presented show that an educated choice on the text preprocessing strategy to employ should be based on the task as well as on the model considered. Outcomes in this survey show that choosing the best preprocessing technique – in place of the worst – can significantly improve accuracy on the classification (up to 25%, as in the case of an XLNet on the IMDB dataset). In some cases, by means of a suitable preprocessing strategy, even a simple Naïve Bayes classifier proved to outperform (i.e., by 2% in accuracy) the best performing Transformer. We found that Transformers and traditional models exhibit a higher impact of the preprocessing on the TC performance. Our main findings are: (1) also on modern pre-trained language models, preprocessing can affect performance, depending on the datasets and on the preprocessing technique or combination of techniques used, (2) in some cases, using a proper preprocessing strategy, simple models can outperform Transformers on TC tasks, (3) similar classes of models exhibit similar level of sensitivity to text preprocessing.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.