{"title":"水杨梅苷对咪喹莫特诱导的银屑病小鼠皮肤炎症的保护作用和调节机制","authors":"Zhenxing Su , Yunqin Kang","doi":"10.1016/j.jphs.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 3","pages":"Pages 192-202"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000750/pdfft?md5=bc2daa468c2c6322889441be04ecbbb4&pid=1-s2.0-S1347861323000750-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Protective effect and regulatory mechanism of salidroside on skin inflammation induced by imiquimod in psoriasis mice\",\"authors\":\"Zhenxing Su , Yunqin Kang\",\"doi\":\"10.1016/j.jphs.2023.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.</p></div>\",\"PeriodicalId\":16786,\"journal\":{\"name\":\"Journal of pharmacological sciences\",\"volume\":\"154 3\",\"pages\":\"Pages 192-202\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1347861323000750/pdfft?md5=bc2daa468c2c6322889441be04ecbbb4&pid=1-s2.0-S1347861323000750-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1347861323000750\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861323000750","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Protective effect and regulatory mechanism of salidroside on skin inflammation induced by imiquimod in psoriasis mice
Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.