PPFO:面向隐私保护的移动人群感知数据新鲜度优化框架

Yaoqi Yang, Bangning Zhang, D. Guo, Weizheng Wang, Xingwang Li, Chunqiang Hu
{"title":"PPFO:面向隐私保护的移动人群感知数据新鲜度优化框架","authors":"Yaoqi Yang, Bangning Zhang, D. Guo, Weizheng Wang, Xingwang Li, Chunqiang Hu","doi":"10.1109/MCOMSTD.0005.2200077","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) is an effective and timely sensing data collection manner. Privacy preservation and data freshness are the two biggest concerns for the robust MCS in the modern era. Data encryption and age of information (Aol) optimization technologies can help current MCS alleviate these two issues by processing a great volume of data messages with strong security and minimal delay. In this article, a secure and timely MCS framework (PPFO: privacy preservationori-ented data freshness optimization) is put forward to achieve the privacy preservation and data freshness optimization, that is, Aol minimization on the five-layer architecture. Particularly in the link and operation layers privacy preservation is realized by an encryption approach. Game theory methodology provides a solution to Aol optimization in the perception and transmission layers. Finally, the numerical results have shown the feasibility and effectiveness of the proposed framework.","PeriodicalId":36719,"journal":{"name":"IEEE Communications Standards Magazine","volume":"8 ","pages":"34-40"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPFO: A Privacy Preservation-oriented Data Freshness Optimization Framework For Mobile Crowdsensing\",\"authors\":\"Yaoqi Yang, Bangning Zhang, D. Guo, Weizheng Wang, Xingwang Li, Chunqiang Hu\",\"doi\":\"10.1109/MCOMSTD.0005.2200077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile crowdsensing (MCS) is an effective and timely sensing data collection manner. Privacy preservation and data freshness are the two biggest concerns for the robust MCS in the modern era. Data encryption and age of information (Aol) optimization technologies can help current MCS alleviate these two issues by processing a great volume of data messages with strong security and minimal delay. In this article, a secure and timely MCS framework (PPFO: privacy preservationori-ented data freshness optimization) is put forward to achieve the privacy preservation and data freshness optimization, that is, Aol minimization on the five-layer architecture. Particularly in the link and operation layers privacy preservation is realized by an encryption approach. Game theory methodology provides a solution to Aol optimization in the perception and transmission layers. Finally, the numerical results have shown the feasibility and effectiveness of the proposed framework.\",\"PeriodicalId\":36719,\"journal\":{\"name\":\"IEEE Communications Standards Magazine\",\"volume\":\"8 \",\"pages\":\"34-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Standards Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCOMSTD.0005.2200077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Standards Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCOMSTD.0005.2200077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

移动众感应(MCS)是一种有效而及时的感知数据收集方式。隐私保护和数据新鲜度是现代强大的移动群感系统最关心的两个问题。数据加密和信息时代(Aol)优化技术可以帮助当前的 MCS 缓解这两个问题,在处理大量数据信息时具有很强的安全性和最小的延迟。本文提出了一种安全、及时的移动通信系统框架(PPFO:privacy preservationori-ented data freshness optimization),在五层架构上实现隐私保护和数据新鲜度优化,即 Aol 最小化。特别是在链路层和操作层,通过加密方法实现了隐私保护。博弈论方法为感知层和传输层的 Aol 优化提供了解决方案。最后,数值结果表明了建议框架的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PPFO: A Privacy Preservation-oriented Data Freshness Optimization Framework For Mobile Crowdsensing
Mobile crowdsensing (MCS) is an effective and timely sensing data collection manner. Privacy preservation and data freshness are the two biggest concerns for the robust MCS in the modern era. Data encryption and age of information (Aol) optimization technologies can help current MCS alleviate these two issues by processing a great volume of data messages with strong security and minimal delay. In this article, a secure and timely MCS framework (PPFO: privacy preservationori-ented data freshness optimization) is put forward to achieve the privacy preservation and data freshness optimization, that is, Aol minimization on the five-layer architecture. Particularly in the link and operation layers privacy preservation is realized by an encryption approach. Game theory methodology provides a solution to Aol optimization in the perception and transmission layers. Finally, the numerical results have shown the feasibility and effectiveness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
55
期刊最新文献
IEEE 802.11BB Reference Channel Models For Light Communications Interface To Security Functions: An Overview And Comparison Of I2nsf And Openc2 Further Enhanced Urllc And Industrial IoT Support With Release-17 5g New Radio A Secure Ndn-based Architecture For Electronic Voting In 6g Space-air-ground Integrated Networks For Urllc In Spatial Digital Twins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1