Francesco Laccone , Nico Pietroni , Paolo Cignoni , Luigi Malomo
{"title":"用于自由形态建筑表面的弯曲加固网格壳体","authors":"Francesco Laccone , Nico Pietroni , Paolo Cignoni , Luigi Malomo","doi":"10.1016/j.cad.2023.103670","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field<span> that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.</span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103670"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending-Reinforced Grid Shells for Free-form Architectural Surfaces\",\"authors\":\"Francesco Laccone , Nico Pietroni , Paolo Cignoni , Luigi Malomo\",\"doi\":\"10.1016/j.cad.2023.103670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field<span> that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.</span></p></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"168 \",\"pages\":\"Article 103670\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448523002026\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523002026","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Bending-Reinforced Grid Shells for Free-form Architectural Surfaces
We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.