{"title":"使用粒子群优化深度学习技术,利用边缘计算和雾云处理心脏数据","authors":"Sheng Chai, Lantian Guo","doi":"10.1007/s10723-023-09706-6","DOIUrl":null,"url":null,"abstract":"<p>Chronic illnesses such as heart disease, diabetes, cancer, and respiratory diseases are complex and pose a significant threat to global health. Processing heart data is particularly challenging due to the variability of symptoms. However, advancements in smart wearable devices, computing technologies, and IoT solutions have made heart data processing easier. This proposed model integrates Edge-Fog-Cloud computing to provide rapid and accurate results, making it a promising solution for heart data processing. Patient data is collected using hardware components, and cardiac feature extraction is used to obtain crucial features from data signals. The Optimized Cascaded Convolution Neural Network (CCNN) processes these features, and the CCNN's hyperparameters are optimized using both PSO (Particle Swarm Optimization) and GSO(Galactic Swarm Optimization) techniques. The proposed system leverages the strengths of both optimization algorithms to improve the accuracy and efficiency of the heart data processing system. The GSO-CCNN optimizes the CCNN's hyperparameters, while the PSO-CCNN optimizes the feature selection process. Combining both algorithms enhances the system's ability to identify relevant features and optimize the CCNN's architecture. Performance analysis demonstrates that the proposed technique, which integrates Edge-Fog-Cloud computing with combined PSO-CCNN and GSO-CCNN techniques, outperforms traditional models such as PSO-CCNN, GSO-CCNN, WOA-CCNN, and DHOA-CCNN, which utilize traditional cloud and edge technologies. The proposed model is evaluated in terms of time, energy consumption, bandwidth, and the standard performance metrics of accuracy, precision, recall, specificity, and F1-score. Therefore, the proposed system's comparative analysis ensures its efficiency over conventional models for heart data processing.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"35 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge Computing with Fog-cloud for Heart Data Processing using Particle Swarm Optimized Deep Learning Technique\",\"authors\":\"Sheng Chai, Lantian Guo\",\"doi\":\"10.1007/s10723-023-09706-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chronic illnesses such as heart disease, diabetes, cancer, and respiratory diseases are complex and pose a significant threat to global health. Processing heart data is particularly challenging due to the variability of symptoms. However, advancements in smart wearable devices, computing technologies, and IoT solutions have made heart data processing easier. This proposed model integrates Edge-Fog-Cloud computing to provide rapid and accurate results, making it a promising solution for heart data processing. Patient data is collected using hardware components, and cardiac feature extraction is used to obtain crucial features from data signals. The Optimized Cascaded Convolution Neural Network (CCNN) processes these features, and the CCNN's hyperparameters are optimized using both PSO (Particle Swarm Optimization) and GSO(Galactic Swarm Optimization) techniques. The proposed system leverages the strengths of both optimization algorithms to improve the accuracy and efficiency of the heart data processing system. The GSO-CCNN optimizes the CCNN's hyperparameters, while the PSO-CCNN optimizes the feature selection process. Combining both algorithms enhances the system's ability to identify relevant features and optimize the CCNN's architecture. Performance analysis demonstrates that the proposed technique, which integrates Edge-Fog-Cloud computing with combined PSO-CCNN and GSO-CCNN techniques, outperforms traditional models such as PSO-CCNN, GSO-CCNN, WOA-CCNN, and DHOA-CCNN, which utilize traditional cloud and edge technologies. The proposed model is evaluated in terms of time, energy consumption, bandwidth, and the standard performance metrics of accuracy, precision, recall, specificity, and F1-score. Therefore, the proposed system's comparative analysis ensures its efficiency over conventional models for heart data processing.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09706-6\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09706-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Edge Computing with Fog-cloud for Heart Data Processing using Particle Swarm Optimized Deep Learning Technique
Chronic illnesses such as heart disease, diabetes, cancer, and respiratory diseases are complex and pose a significant threat to global health. Processing heart data is particularly challenging due to the variability of symptoms. However, advancements in smart wearable devices, computing technologies, and IoT solutions have made heart data processing easier. This proposed model integrates Edge-Fog-Cloud computing to provide rapid and accurate results, making it a promising solution for heart data processing. Patient data is collected using hardware components, and cardiac feature extraction is used to obtain crucial features from data signals. The Optimized Cascaded Convolution Neural Network (CCNN) processes these features, and the CCNN's hyperparameters are optimized using both PSO (Particle Swarm Optimization) and GSO(Galactic Swarm Optimization) techniques. The proposed system leverages the strengths of both optimization algorithms to improve the accuracy and efficiency of the heart data processing system. The GSO-CCNN optimizes the CCNN's hyperparameters, while the PSO-CCNN optimizes the feature selection process. Combining both algorithms enhances the system's ability to identify relevant features and optimize the CCNN's architecture. Performance analysis demonstrates that the proposed technique, which integrates Edge-Fog-Cloud computing with combined PSO-CCNN and GSO-CCNN techniques, outperforms traditional models such as PSO-CCNN, GSO-CCNN, WOA-CCNN, and DHOA-CCNN, which utilize traditional cloud and edge technologies. The proposed model is evaluated in terms of time, energy consumption, bandwidth, and the standard performance metrics of accuracy, precision, recall, specificity, and F1-score. Therefore, the proposed system's comparative analysis ensures its efficiency over conventional models for heart data processing.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.