{"title":"以向日葵皂基酸油为新型原料生产高质量生物柴油:固定化胰脂肪酶催化","authors":"Hatice Paluzar","doi":"10.1002/aocs.12804","DOIUrl":null,"url":null,"abstract":"<p>Edible refined oils, which are utilized as raw materials in biodiesel production, have been replaced by by-products (acid oil, fatty acid, deodorized distillate, and soapstock distillates) obtained from the vegetable oil refining industry, in recent years. This study aims to investigate the production of high quality biodiesel fuel in accordance with the standards (TS EN and ASTM) from sunflower soapstock acid oil. This feedstock was donated by an oil factory in the Thrace region, Turkey. Esterification reaction was performed by immobilized enzyme. For this, immobilization was carried out by covalent binding of pancreatic lipase in glutaraldehyde activated chitosan and optimum immobilization conditions were determined. The activity of the immobilized lipase and the retained activity were found to be 65.69 U/μg and 61.8%, respectively (pH: 7.5, 37°C). The <i>K</i><sub>m</sub> (Michealis constant) and <i>V</i><sub>max</sub> (maximum velocity of an enzymatically catalyzed reaction) values of the immobilized enzyme were found to be 5.1 mmol/L and 48.6 U/min/mg protein, respectively. The immobilized enzyme was employed as a biocatalyst for esterification of sunflower soapstock acid oil. Notably, an impressive yield of 75.6% was attained under the conditions of a 1:5 molar ratio of soapstock acid oil to methanol, with 10 wt% immobilized lipase as the catalyst, and a reaction temperature of 45°C for 36 h. The resulting biodiesel exhibits fuel characteristics that meet the standards outlined in TS EN 14214:2012 + A2 and ASTM D6751-02.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of high quality biodiesel from sunflower soapstock acid oil as novel feedstock: Catalyzed by immobilized pancreatic lipase\",\"authors\":\"Hatice Paluzar\",\"doi\":\"10.1002/aocs.12804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Edible refined oils, which are utilized as raw materials in biodiesel production, have been replaced by by-products (acid oil, fatty acid, deodorized distillate, and soapstock distillates) obtained from the vegetable oil refining industry, in recent years. This study aims to investigate the production of high quality biodiesel fuel in accordance with the standards (TS EN and ASTM) from sunflower soapstock acid oil. This feedstock was donated by an oil factory in the Thrace region, Turkey. Esterification reaction was performed by immobilized enzyme. For this, immobilization was carried out by covalent binding of pancreatic lipase in glutaraldehyde activated chitosan and optimum immobilization conditions were determined. The activity of the immobilized lipase and the retained activity were found to be 65.69 U/μg and 61.8%, respectively (pH: 7.5, 37°C). The <i>K</i><sub>m</sub> (Michealis constant) and <i>V</i><sub>max</sub> (maximum velocity of an enzymatically catalyzed reaction) values of the immobilized enzyme were found to be 5.1 mmol/L and 48.6 U/min/mg protein, respectively. The immobilized enzyme was employed as a biocatalyst for esterification of sunflower soapstock acid oil. Notably, an impressive yield of 75.6% was attained under the conditions of a 1:5 molar ratio of soapstock acid oil to methanol, with 10 wt% immobilized lipase as the catalyst, and a reaction temperature of 45°C for 36 h. The resulting biodiesel exhibits fuel characteristics that meet the standards outlined in TS EN 14214:2012 + A2 and ASTM D6751-02.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12804\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12804","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Production of high quality biodiesel from sunflower soapstock acid oil as novel feedstock: Catalyzed by immobilized pancreatic lipase
Edible refined oils, which are utilized as raw materials in biodiesel production, have been replaced by by-products (acid oil, fatty acid, deodorized distillate, and soapstock distillates) obtained from the vegetable oil refining industry, in recent years. This study aims to investigate the production of high quality biodiesel fuel in accordance with the standards (TS EN and ASTM) from sunflower soapstock acid oil. This feedstock was donated by an oil factory in the Thrace region, Turkey. Esterification reaction was performed by immobilized enzyme. For this, immobilization was carried out by covalent binding of pancreatic lipase in glutaraldehyde activated chitosan and optimum immobilization conditions were determined. The activity of the immobilized lipase and the retained activity were found to be 65.69 U/μg and 61.8%, respectively (pH: 7.5, 37°C). The Km (Michealis constant) and Vmax (maximum velocity of an enzymatically catalyzed reaction) values of the immobilized enzyme were found to be 5.1 mmol/L and 48.6 U/min/mg protein, respectively. The immobilized enzyme was employed as a biocatalyst for esterification of sunflower soapstock acid oil. Notably, an impressive yield of 75.6% was attained under the conditions of a 1:5 molar ratio of soapstock acid oil to methanol, with 10 wt% immobilized lipase as the catalyst, and a reaction temperature of 45°C for 36 h. The resulting biodiesel exhibits fuel characteristics that meet the standards outlined in TS EN 14214:2012 + A2 and ASTM D6751-02.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.