Fuwei Wang , Yongzeng Yang , Xunqiang Yin , Xingjie Jiang , Meng Sun
{"title":"通过纳入波浪产生的湍流消散和改进的破浪后频谱,提高波浪建模性能","authors":"Fuwei Wang , Yongzeng Yang , Xunqiang Yin , Xingjie Jiang , Meng Sun","doi":"10.1016/j.ocemod.2023.102311","DOIUrl":null,"url":null,"abstract":"<div><p>The wave-generated turbulence dissipation term together with the improved post-breaking spectrum term proposed in this paper are incorporated in the MASNUM wave model as new dissipation terms. To compare the performance of these terms with the previous dissipation term in wave simulation, comprehensive validations of the simulated results were conducted against satellite data and NDBC buoy data on the significant wave heights. The results show that the incorporation of the wave-generated turbulence dissipation term with the improved post-breaking spectrum term significantly improves the model performance, the deviations are significantly reduced, and the correlation coefficients are effectively improved. In particular, there is a noticeable improvement in the simulation of significant wave heights exceeding 4 m or 6 m. In addition, a preliminary ideal experiment was conducted to compare the effect of the swell dissipation term proposed by Zieger et al. (2015) and the wave-generated turbulence dissipation term, and the results show that the dissipation magnitudes of the two terms are consistent to some extent.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500323001518/pdfft?md5=7a5fd99f6ddf7bb2db89690232d9cd94&pid=1-s2.0-S1463500323001518-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving wave modeling performance by incorporating wave-generated turbulence dissipation and improved post-breaking spectrum\",\"authors\":\"Fuwei Wang , Yongzeng Yang , Xunqiang Yin , Xingjie Jiang , Meng Sun\",\"doi\":\"10.1016/j.ocemod.2023.102311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The wave-generated turbulence dissipation term together with the improved post-breaking spectrum term proposed in this paper are incorporated in the MASNUM wave model as new dissipation terms. To compare the performance of these terms with the previous dissipation term in wave simulation, comprehensive validations of the simulated results were conducted against satellite data and NDBC buoy data on the significant wave heights. The results show that the incorporation of the wave-generated turbulence dissipation term with the improved post-breaking spectrum term significantly improves the model performance, the deviations are significantly reduced, and the correlation coefficients are effectively improved. In particular, there is a noticeable improvement in the simulation of significant wave heights exceeding 4 m or 6 m. In addition, a preliminary ideal experiment was conducted to compare the effect of the swell dissipation term proposed by Zieger et al. (2015) and the wave-generated turbulence dissipation term, and the results show that the dissipation magnitudes of the two terms are consistent to some extent.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1463500323001518/pdfft?md5=7a5fd99f6ddf7bb2db89690232d9cd94&pid=1-s2.0-S1463500323001518-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500323001518\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500323001518","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Improving wave modeling performance by incorporating wave-generated turbulence dissipation and improved post-breaking spectrum
The wave-generated turbulence dissipation term together with the improved post-breaking spectrum term proposed in this paper are incorporated in the MASNUM wave model as new dissipation terms. To compare the performance of these terms with the previous dissipation term in wave simulation, comprehensive validations of the simulated results were conducted against satellite data and NDBC buoy data on the significant wave heights. The results show that the incorporation of the wave-generated turbulence dissipation term with the improved post-breaking spectrum term significantly improves the model performance, the deviations are significantly reduced, and the correlation coefficients are effectively improved. In particular, there is a noticeable improvement in the simulation of significant wave heights exceeding 4 m or 6 m. In addition, a preliminary ideal experiment was conducted to compare the effect of the swell dissipation term proposed by Zieger et al. (2015) and the wave-generated turbulence dissipation term, and the results show that the dissipation magnitudes of the two terms are consistent to some extent.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.