带有函数协变量的多变量极端期望值的估计

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-12-23 DOI:10.1016/j.jmva.2023.105292
Elena Di Bernardino , Thomas Laloë , Cambyse Pakzad
{"title":"带有函数协变量的多变量极端期望值的估计","authors":"Elena Di Bernardino ,&nbsp;Thomas Laloë ,&nbsp;Cambyse Pakzad","doi":"10.1016/j.jmva.2023.105292","DOIUrl":null,"url":null,"abstract":"<div><p><span>The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate<span><span>, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional </span>quantiles, conditional </span></span>tail index<span><span> and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in </span>probability<span> of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size. The finite-sample performance of our methodology is provided via a numerical illustration of simulated datasets.</span></span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"202 ","pages":"Article 105292"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of extreme multivariate expectiles with functional covariates\",\"authors\":\"Elena Di Bernardino ,&nbsp;Thomas Laloë ,&nbsp;Cambyse Pakzad\",\"doi\":\"10.1016/j.jmva.2023.105292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate<span><span>, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional </span>quantiles, conditional </span></span>tail index<span><span> and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in </span>probability<span> of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size. The finite-sample performance of our methodology is provided via a numerical illustration of simulated datasets.</span></span></p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"202 \",\"pages\":\"Article 105292\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001380\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001380","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于对极端水平的多元期望值进行半参数估计。所考虑的多元风险度量还包括与函数协变量相关的可能条件,属于无限维空间。通过使用一阶最优条件,我们将这些期望值解释为多维非线性最优问题的解。然后,根据梯度下降类型的最小化算法进行推理,并结合对关键统计量(如条件量值、条件尾指数和条件尾依赖函数)的一致内核估计。该方法对等效重尾边际有效,并且在具有任意依赖结构的底层未知随机向量的多变量正则变化条件下也有效。我们的主要结果确定了最优近似解向量的概率与速度的一致性。这样,我们就能根据数据样本的大小,估算出整个程序的全局计算成本。我们通过模拟数据集的数值说明,提供了我们方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of extreme multivariate expectiles with functional covariates

The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional quantiles, conditional tail index and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in probability of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size. The finite-sample performance of our methodology is provided via a numerical illustration of simulated datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1