在强参量放大条件下使用未检测到的光子进行宽带光谱学和干涉测量

Kazuki Hashimoto, Dmitri B. Horoshko, Maria V. Chekhova
{"title":"在强参量放大条件下使用未检测到的光子进行宽带光谱学和干涉测量","authors":"Kazuki Hashimoto, Dmitri B. Horoshko, Maria V. Chekhova","doi":"10.1002/qute.202300299","DOIUrl":null,"url":null,"abstract":"Nonlinear interferometry with entangled photons allows for characterizing a sample without detecting the photons interacting with it. This method enables highly sensitive optical sensing in the wavelength regions where efficient detectors are still under development. Recently, nonlinear interferometry has been applied to interferometric measurement techniques with broadband light sources, such as Fourier-transform infrared spectroscopy and infrared optical coherence tomography. However, they have been demonstrated with photon pairs produced through spontaneous parametric down-conversion (SPDC) at a low parametric gain, where the average number of photons per mode is much smaller than one. The regime of high-gain SPDC offers several important advantages, such as the amplification of light after its interaction with the sample and a large number of photons per mode at the interferometer output. This work presents broadband spectroscopy and high-resolution optical coherence tomography with undetected photons generated via high-gain SPDC in an aperiodically poled lithium niobate crystal. To prove the principle, reflective Fourier-transform near-infrared spectroscopy with a spectral bandwidth of 17 THz and optical coherence tomography with an axial resolution of 11 µm are demonstrated.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband Spectroscopy and Interferometry with Undetected Photons at Strong Parametric Amplification\",\"authors\":\"Kazuki Hashimoto, Dmitri B. Horoshko, Maria V. Chekhova\",\"doi\":\"10.1002/qute.202300299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear interferometry with entangled photons allows for characterizing a sample without detecting the photons interacting with it. This method enables highly sensitive optical sensing in the wavelength regions where efficient detectors are still under development. Recently, nonlinear interferometry has been applied to interferometric measurement techniques with broadband light sources, such as Fourier-transform infrared spectroscopy and infrared optical coherence tomography. However, they have been demonstrated with photon pairs produced through spontaneous parametric down-conversion (SPDC) at a low parametric gain, where the average number of photons per mode is much smaller than one. The regime of high-gain SPDC offers several important advantages, such as the amplification of light after its interaction with the sample and a large number of photons per mode at the interferometer output. This work presents broadband spectroscopy and high-resolution optical coherence tomography with undetected photons generated via high-gain SPDC in an aperiodically poled lithium niobate crystal. To prove the principle, reflective Fourier-transform near-infrared spectroscopy with a spectral bandwidth of 17 THz and optical coherence tomography with an axial resolution of 11 µm are demonstrated.\",\"PeriodicalId\":501028,\"journal\":{\"name\":\"Advanced Quantum Technologies\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/qute.202300299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用纠缠光子进行非线性干涉测量,可以在不探测与样品相互作用的光子的情况下确定样品的特性。这种方法可以在高效探测器仍在开发的波长区域实现高灵敏度的光学传感。最近,非线性干涉测量法已被应用于宽带光源干涉测量技术,如傅立叶变换红外光谱和红外光相干断层扫描。不过,这些技术都是在低参数增益条件下通过自发参数下变频(SPDC)产生的光子对进行演示的,在低参数增益条件下,每个模式的平均光子数远远小于 1。高增益 SPDC 机制具有几个重要优势,例如光与样品相互作用后会被放大,以及干涉仪输出端每个模式的光子数较多。这项工作介绍了在非周期性极化铌酸锂晶体中通过高增益 SPDC 产生的未检测光子进行宽带光谱分析和高分辨率光学相干断层扫描的情况。为了证明其原理,演示了光谱带宽为 17 太赫兹的反射式傅立叶变换近红外光谱仪和轴向分辨率为 11 微米的光学相干断层成像仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broadband Spectroscopy and Interferometry with Undetected Photons at Strong Parametric Amplification
Nonlinear interferometry with entangled photons allows for characterizing a sample without detecting the photons interacting with it. This method enables highly sensitive optical sensing in the wavelength regions where efficient detectors are still under development. Recently, nonlinear interferometry has been applied to interferometric measurement techniques with broadband light sources, such as Fourier-transform infrared spectroscopy and infrared optical coherence tomography. However, they have been demonstrated with photon pairs produced through spontaneous parametric down-conversion (SPDC) at a low parametric gain, where the average number of photons per mode is much smaller than one. The regime of high-gain SPDC offers several important advantages, such as the amplification of light after its interaction with the sample and a large number of photons per mode at the interferometer output. This work presents broadband spectroscopy and high-resolution optical coherence tomography with undetected photons generated via high-gain SPDC in an aperiodically poled lithium niobate crystal. To prove the principle, reflective Fourier-transform near-infrared spectroscopy with a spectral bandwidth of 17 THz and optical coherence tomography with an axial resolution of 11 µm are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing the Sensitivity of Quantum Fiber‐Optical Gyroscope via a Non‐Gaussian‐State Probe Implementation of Entanglement Witnesses with Quantum Circuits Quantum Effect Enables Large Elastocaloric Effect in Monolayer MoSi2N4${\rm MoSi}_2{\rm N}_4$ and Graphene Dynamic Phase Enabled Topological Mode Steering in Composite Su‐Schrieffer–Heeger Waveguide Arrays Variational Quantum Algorithm‐Preserving Feasible Space for Solving the Uncapacitated Facility Location Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1