Christopher D. Putnam, Lori Broderick, Hal M. Hoffman
{"title":"NLRP3 的发现及其在冰冻蛋白相关周期性综合征和先天性免疫中的功能。","authors":"Christopher D. Putnam, Lori Broderick, Hal M. Hoffman","doi":"10.1111/imr.13292","DOIUrl":null,"url":null,"abstract":"<p>From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13292","citationCount":"0","resultStr":"{\"title\":\"The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity\",\"authors\":\"Christopher D. Putnam, Lori Broderick, Hal M. Hoffman\",\"doi\":\"10.1111/imr.13292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.</p>\",\"PeriodicalId\":178,\"journal\":{\"name\":\"Immunological Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13292\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imr.13292\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imr.13292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity
From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.
期刊介绍:
Immunological Reviews is a specialized journal that focuses on various aspects of immunological research. It encompasses a wide range of topics, such as clinical immunology, experimental immunology, and investigations related to allergy and the immune system.
The journal follows a unique approach where each volume is dedicated solely to a specific area of immunological research. However, collectively, these volumes aim to offer an extensive and up-to-date overview of the latest advancements in basic immunology and their practical implications in clinical settings.