Jelena Kovačić, Daniela Amidžić Klarić, Nikša Turk, Ana Mornar
{"title":"尺寸排阻色谱法作为阿达木单抗强制降解研究的绿色支持。","authors":"Jelena Kovačić, Daniela Amidžić Klarić, Nikša Turk, Ana Mornar","doi":"10.2478/acph-2023-0044","DOIUrl":null,"url":null,"abstract":"<p><p>Size exclusion chromatography (SEC) has become a powerful tool for analysing size variants of biologic drugs in their native form. Modern SEC can be defined by the use of chromatographic columns packed with sub-3 µm particles, allowing an increase in method throughput compared to that of conventional SEC. We performed the forced degradation study of adalimumab, the first genetically engineered fully humanised immunoglobulin G1 monoclonal antibody, and evaluated tha possibilities of an advanced SEC column packed with sub-3 µm particles for elucidation of the degradation pathway. Our results revealed the main adalimumab degradation products to be antibody fragments. Acidic and basic conditions had the most intensive effect on the degradation of the adalimumab while the drug exhibits relative stability under thermal and photolytic stress conditions. The AGREE and AGREEprep calculators were used for the evaluation of the environmental performance of the forced degradation procedure. The results of the green score evaluation are presented as round pictograms with a circle in the centre that shows the overall score of 0.81 and 0.61, respectively. Both pictograms are highlighted in green, indicating the eco-friendly conditions.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"73 4","pages":"709-721"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size exclusion chromatography as green support for forced degradation study of adalimumab.\",\"authors\":\"Jelena Kovačić, Daniela Amidžić Klarić, Nikša Turk, Ana Mornar\",\"doi\":\"10.2478/acph-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Size exclusion chromatography (SEC) has become a powerful tool for analysing size variants of biologic drugs in their native form. Modern SEC can be defined by the use of chromatographic columns packed with sub-3 µm particles, allowing an increase in method throughput compared to that of conventional SEC. We performed the forced degradation study of adalimumab, the first genetically engineered fully humanised immunoglobulin G1 monoclonal antibody, and evaluated tha possibilities of an advanced SEC column packed with sub-3 µm particles for elucidation of the degradation pathway. Our results revealed the main adalimumab degradation products to be antibody fragments. Acidic and basic conditions had the most intensive effect on the degradation of the adalimumab while the drug exhibits relative stability under thermal and photolytic stress conditions. The AGREE and AGREEprep calculators were used for the evaluation of the environmental performance of the forced degradation procedure. The results of the green score evaluation are presented as round pictograms with a circle in the centre that shows the overall score of 0.81 and 0.61, respectively. Both pictograms are highlighted in green, indicating the eco-friendly conditions.</p>\",\"PeriodicalId\":7034,\"journal\":{\"name\":\"Acta Pharmaceutica\",\"volume\":\"73 4\",\"pages\":\"709-721\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/acph-2023-0044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2023-0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Size exclusion chromatography as green support for forced degradation study of adalimumab.
Size exclusion chromatography (SEC) has become a powerful tool for analysing size variants of biologic drugs in their native form. Modern SEC can be defined by the use of chromatographic columns packed with sub-3 µm particles, allowing an increase in method throughput compared to that of conventional SEC. We performed the forced degradation study of adalimumab, the first genetically engineered fully humanised immunoglobulin G1 monoclonal antibody, and evaluated tha possibilities of an advanced SEC column packed with sub-3 µm particles for elucidation of the degradation pathway. Our results revealed the main adalimumab degradation products to be antibody fragments. Acidic and basic conditions had the most intensive effect on the degradation of the adalimumab while the drug exhibits relative stability under thermal and photolytic stress conditions. The AGREE and AGREEprep calculators were used for the evaluation of the environmental performance of the forced degradation procedure. The results of the green score evaluation are presented as round pictograms with a circle in the centre that shows the overall score of 0.81 and 0.61, respectively. Both pictograms are highlighted in green, indicating the eco-friendly conditions.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.