极端性状 GWAS(Et-GWAS):揭示 3000 个水稻基因组中的罕见变异。

IF 3.3 2区 生物学 Q1 BIOLOGY Life Science Alliance Pub Date : 2023-12-26 Print Date: 2024-03-01 DOI:10.26508/lsa.202302352
Niranjani Gnanapragasam, Vinukonda Vishnu Prasanth, Krishna Tesman Sundaram, Ajay Kumar, Bandana Pahi, Anoop Gurjar, Challa Venkateshwarlu, Sanjay Kalia, Arvind Kumar, Shalabh Dixit, Ajay Kohli, Uma Maheshwer Singh, Vikas Kumar Singh, Pallavi Sinha
{"title":"极端性状 GWAS(Et-GWAS):揭示 3000 个水稻基因组中的罕见变异。","authors":"Niranjani Gnanapragasam, Vinukonda Vishnu Prasanth, Krishna Tesman Sundaram, Ajay Kumar, Bandana Pahi, Anoop Gurjar, Challa Venkateshwarlu, Sanjay Kalia, Arvind Kumar, Shalabh Dixit, Ajay Kohli, Uma Maheshwer Singh, Vikas Kumar Singh, Pallavi Sinha","doi":"10.26508/lsa.202302352","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying high-impact, rare genetic variants associated with specific traits is crucial for crop improvement. The 3,010 rice genome (3K RG) dataset offers a valuable resource for discovering genomic regions with potential applications in crop breeding. We used Extreme Trait GWAS (Et-GWAS), employing bulk pooling and allele frequency measurement to efficiently extract rare variants from the 3K RG. This innovative approach facilitates the detection of associations between genetic variants and target traits, concentrating and quantifying rare alleles. In our study, on grain yield under drought stress, Et-GWAS successfully identified five key genes (<i>OsPP2C11</i>, <i>OsK5.2</i>, <i>OsIRO2</i>, <i>OsPEX1</i>, and <i>OsPWA1</i>) known for enhancing yield under drought. In addition, we examined the overlap of our results with previously reported <i>qDTY</i>-QTLs and observed that <i>OsUCH1</i> and <i>OsUCH2</i> genes were located within <i>qDTY2.2</i> We compared Et-GWAS with conventional GWAS, finding it effectively capturing most candidate genes associated with the target trait. Validation with resistant starch showed similar results. To enhance user-friendliness, we developed a GUI for Et-GWAS; https://et-gwas.shinyapps.io/Et-GWAS/.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extreme trait GWAS (Et-GWAS): Unraveling rare variants in the 3,000 rice genome.\",\"authors\":\"Niranjani Gnanapragasam, Vinukonda Vishnu Prasanth, Krishna Tesman Sundaram, Ajay Kumar, Bandana Pahi, Anoop Gurjar, Challa Venkateshwarlu, Sanjay Kalia, Arvind Kumar, Shalabh Dixit, Ajay Kohli, Uma Maheshwer Singh, Vikas Kumar Singh, Pallavi Sinha\",\"doi\":\"10.26508/lsa.202302352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying high-impact, rare genetic variants associated with specific traits is crucial for crop improvement. The 3,010 rice genome (3K RG) dataset offers a valuable resource for discovering genomic regions with potential applications in crop breeding. We used Extreme Trait GWAS (Et-GWAS), employing bulk pooling and allele frequency measurement to efficiently extract rare variants from the 3K RG. This innovative approach facilitates the detection of associations between genetic variants and target traits, concentrating and quantifying rare alleles. In our study, on grain yield under drought stress, Et-GWAS successfully identified five key genes (<i>OsPP2C11</i>, <i>OsK5.2</i>, <i>OsIRO2</i>, <i>OsPEX1</i>, and <i>OsPWA1</i>) known for enhancing yield under drought. In addition, we examined the overlap of our results with previously reported <i>qDTY</i>-QTLs and observed that <i>OsUCH1</i> and <i>OsUCH2</i> genes were located within <i>qDTY2.2</i> We compared Et-GWAS with conventional GWAS, finding it effectively capturing most candidate genes associated with the target trait. Validation with resistant starch showed similar results. To enhance user-friendliness, we developed a GUI for Et-GWAS; https://et-gwas.shinyapps.io/Et-GWAS/.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202302352\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302352","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鉴定与特定性状相关的高影响稀有遗传变异对作物改良至关重要。3010 个水稻基因组(3K RG)数据集为发现具有作物育种潜在应用价值的基因组区域提供了宝贵的资源。我们利用极端性状全球基因组分析(Extreme Trait GWAS,Et-GWAS),采用批量汇集和等位基因频率测量方法,从 3K RG 中高效提取稀有变异。这种创新方法有助于检测遗传变异与目标性状之间的关联,集中并量化稀有等位基因。在我们关于干旱胁迫下谷物产量的研究中,Et-GWAS 成功鉴定了五个已知能提高干旱下产量的关键基因(OsPP2C11、OsK5.2、OsIRO2、OsPEX1 和 OsPWA1)。2 我们将 Et-GWAS 与传统的 GWAS 进行了比较,发现它能有效捕获与目标性状相关的大多数候选基因。抗性淀粉的验证结果与之相似。为了提高用户友好性,我们开发了 Et-GWAS 的图形用户界面;https://et-gwas.shinyapps.io/Et-GWAS/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extreme trait GWAS (Et-GWAS): Unraveling rare variants in the 3,000 rice genome.

Identifying high-impact, rare genetic variants associated with specific traits is crucial for crop improvement. The 3,010 rice genome (3K RG) dataset offers a valuable resource for discovering genomic regions with potential applications in crop breeding. We used Extreme Trait GWAS (Et-GWAS), employing bulk pooling and allele frequency measurement to efficiently extract rare variants from the 3K RG. This innovative approach facilitates the detection of associations between genetic variants and target traits, concentrating and quantifying rare alleles. In our study, on grain yield under drought stress, Et-GWAS successfully identified five key genes (OsPP2C11, OsK5.2, OsIRO2, OsPEX1, and OsPWA1) known for enhancing yield under drought. In addition, we examined the overlap of our results with previously reported qDTY-QTLs and observed that OsUCH1 and OsUCH2 genes were located within qDTY2.2 We compared Et-GWAS with conventional GWAS, finding it effectively capturing most candidate genes associated with the target trait. Validation with resistant starch showed similar results. To enhance user-friendliness, we developed a GUI for Et-GWAS; https://et-gwas.shinyapps.io/Et-GWAS/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
期刊最新文献
Mass spectrometry-based proteomic exploration of diverse murine macrophage cellular models. Antigen-specific modulation of chronic experimental autoimmune encephalomyelitis in humanized mice by TCR-like antibody targeting autoreactive T-cell epitope. PTPN1/2 inhibition promotes muscle stem cell differentiation in Duchenne muscular dystrophy. BACH1 as a key driver in rheumatoid arthritis fibroblast-like synoviocytes identified through gene network analysis. Correction: Gene expression and chromatin conformation of microglia in virally suppressed people with HIV.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1