Hong Sun , Heng Li , Heng Yang , Jun Ma , Xuancheng Hao , M.W. Fu
{"title":"通过低温效应控制力学性能和摩擦行为,突破铝合金管的弯曲极限","authors":"Hong Sun , Heng Li , Heng Yang , Jun Ma , Xuancheng Hao , M.W. Fu","doi":"10.1016/j.ijmachtools.2023.104111","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Aluminium alloy (Al-alloy) tubes, especially large-diameter thin-walled tubes with a tough </span>bending radius, have been widely utilised in different industrial clusters owing to their high strength-to-weight ratio and </span>good corrosion resistance<span><span>. However, achieving such extreme specifications is challenging because severe and nonuniform bending deformation may cause tension and compression instabilities, such as overthinning, cracking, and wrinkling. Considering possible improvements in mechanical properties and friction behaviours of Al-alloy at </span>cryogenic temperature (CT), the cryogenic bending potential of the 6061-O tubes with an extreme ratio of </span></span><em>D</em>/<em>t</em><span> of 89 (diameter/wall thickness) was explored at different deformation temperatures<span><span><span>, including room temperature (RT) 20 °C, −60 °C, −120 °C, and −180 °C. First, the cryogenic mechanical properties and friction behaviour of the tubes were characterised. It was found that the overall mechanical properties of the Al-alloy tube were improved because of sub-grain formation and a more uniform distribution of dislocations at CT. The coefficient of friction between the tube and tooling exhibited a varying degree of reduction owing to the sensitivity of the tubes and the lubricant to CT. Subsequently, an innovative experimental platform for cryogenic bending was designed, and a </span>finite element model of cryogenic bending was established. Third, cryogenic tube </span>bendability and mechanism were explored. It was found that 6061-O tube formability can be effectively improved by cryogenic bending; however, there is no monotonic relationship between the bendability improvement and temperature decrease. The temperature to obtain the best bendability is −60 °C, at which the average wrinkle height is decreased by 81.4 %, and the average wall thickness reduction rate is reduced by 23.8 %. The bending limit represented by the bending radius is reduced from a 3.0</span></span><em>D</em> bending radius at RT to 1.0<em>D</em><span> at −60 °C, which is realised by the different or even opposite effects of the mechanical properties of tubes and the friction coefficient between the multiple contact interfaces on wall thinning and wrinkling.</span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104111"},"PeriodicalIF":14.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking through the bending limit of Al-alloy tubes by cryogenic effect controlled mechanical properties and friction behaviours\",\"authors\":\"Hong Sun , Heng Li , Heng Yang , Jun Ma , Xuancheng Hao , M.W. Fu\",\"doi\":\"10.1016/j.ijmachtools.2023.104111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Aluminium alloy (Al-alloy) tubes, especially large-diameter thin-walled tubes with a tough </span>bending radius, have been widely utilised in different industrial clusters owing to their high strength-to-weight ratio and </span>good corrosion resistance<span><span>. However, achieving such extreme specifications is challenging because severe and nonuniform bending deformation may cause tension and compression instabilities, such as overthinning, cracking, and wrinkling. Considering possible improvements in mechanical properties and friction behaviours of Al-alloy at </span>cryogenic temperature (CT), the cryogenic bending potential of the 6061-O tubes with an extreme ratio of </span></span><em>D</em>/<em>t</em><span> of 89 (diameter/wall thickness) was explored at different deformation temperatures<span><span><span>, including room temperature (RT) 20 °C, −60 °C, −120 °C, and −180 °C. First, the cryogenic mechanical properties and friction behaviour of the tubes were characterised. It was found that the overall mechanical properties of the Al-alloy tube were improved because of sub-grain formation and a more uniform distribution of dislocations at CT. The coefficient of friction between the tube and tooling exhibited a varying degree of reduction owing to the sensitivity of the tubes and the lubricant to CT. Subsequently, an innovative experimental platform for cryogenic bending was designed, and a </span>finite element model of cryogenic bending was established. Third, cryogenic tube </span>bendability and mechanism were explored. It was found that 6061-O tube formability can be effectively improved by cryogenic bending; however, there is no monotonic relationship between the bendability improvement and temperature decrease. The temperature to obtain the best bendability is −60 °C, at which the average wrinkle height is decreased by 81.4 %, and the average wall thickness reduction rate is reduced by 23.8 %. The bending limit represented by the bending radius is reduced from a 3.0</span></span><em>D</em> bending radius at RT to 1.0<em>D</em><span> at −60 °C, which is realised by the different or even opposite effects of the mechanical properties of tubes and the friction coefficient between the multiple contact interfaces on wall thinning and wrinkling.</span></p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"195 \",\"pages\":\"Article 104111\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695523001190\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695523001190","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Breaking through the bending limit of Al-alloy tubes by cryogenic effect controlled mechanical properties and friction behaviours
Aluminium alloy (Al-alloy) tubes, especially large-diameter thin-walled tubes with a tough bending radius, have been widely utilised in different industrial clusters owing to their high strength-to-weight ratio and good corrosion resistance. However, achieving such extreme specifications is challenging because severe and nonuniform bending deformation may cause tension and compression instabilities, such as overthinning, cracking, and wrinkling. Considering possible improvements in mechanical properties and friction behaviours of Al-alloy at cryogenic temperature (CT), the cryogenic bending potential of the 6061-O tubes with an extreme ratio of D/t of 89 (diameter/wall thickness) was explored at different deformation temperatures, including room temperature (RT) 20 °C, −60 °C, −120 °C, and −180 °C. First, the cryogenic mechanical properties and friction behaviour of the tubes were characterised. It was found that the overall mechanical properties of the Al-alloy tube were improved because of sub-grain formation and a more uniform distribution of dislocations at CT. The coefficient of friction between the tube and tooling exhibited a varying degree of reduction owing to the sensitivity of the tubes and the lubricant to CT. Subsequently, an innovative experimental platform for cryogenic bending was designed, and a finite element model of cryogenic bending was established. Third, cryogenic tube bendability and mechanism were explored. It was found that 6061-O tube formability can be effectively improved by cryogenic bending; however, there is no monotonic relationship between the bendability improvement and temperature decrease. The temperature to obtain the best bendability is −60 °C, at which the average wrinkle height is decreased by 81.4 %, and the average wall thickness reduction rate is reduced by 23.8 %. The bending limit represented by the bending radius is reduced from a 3.0D bending radius at RT to 1.0D at −60 °C, which is realised by the different or even opposite effects of the mechanical properties of tubes and the friction coefficient between the multiple contact interfaces on wall thinning and wrinkling.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).