Ioannis Panagopoulos, Kristin Andersen, Inga Maria Rinvoll Johannsdottir, Maren Randi Tandsæther, Francesca Micci, Sverre Heim
{"title":"小儿混合表型急性白血病 (MPAL) 的遗传特征。","authors":"Ioannis Panagopoulos, Kristin Andersen, Inga Maria Rinvoll Johannsdottir, Maren Randi Tandsæther, Francesca Micci, Sverre Heim","doi":"10.21873/cgp.20424","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Mixed phenotype acute leukemia (MPAL) is a rare hematologic malignancy in which the leukemic cells cannot be assigned to any specific lineage. The lack of well-defined, pathogenetically relevant diagnostic criteria makes the clinical handling of MPAL patients challenging. We herein report the genetic findings in bone marrow cells from two pediatric MPAL patients.</p><p><strong>Patients and methods: </strong>Bone marrow cells were examined using G-banding, array comparative genomic hybridization, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization.</p><p><strong>Results: </strong>In the first patient, the genetic analyses revealed structural aberrations of chromosomal bands 8p11, 10p11, 11q21, and 17p11, the chimeras MLLT10::PICALM and PICALM::MLLT10, and imbalances (gains/losses) on chromosomes 2, 4, 8, 13, and 21. A submicroscopic deletion in 21q was also found including the RUNX1 locus. In the second patient, there were structural aberrations of chromosome bands 1p32, 8p11, 12p13, 20p13, and 20q11, the chimeras ETV6::LEXM and NCOA6::ETV6, and imbalances on chromosomes 2, 8, 11, 12, 16, 19, X, and Y.</p><p><strong>Conclusion: </strong>The leukemic cells from both MPAL patients carried chromosome aberrations resulting in fusion genes as well as genomic imbalances resulting in gain and losses of many gene loci. The detected fusion genes probably represent the main leukemogenic events, although the gains and losses are also likely to play a role in leukemogenesis.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"21 1","pages":"1-11"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic Characterization of Pediatric Mixed Phenotype Acute Leukemia (MPAL).\",\"authors\":\"Ioannis Panagopoulos, Kristin Andersen, Inga Maria Rinvoll Johannsdottir, Maren Randi Tandsæther, Francesca Micci, Sverre Heim\",\"doi\":\"10.21873/cgp.20424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Mixed phenotype acute leukemia (MPAL) is a rare hematologic malignancy in which the leukemic cells cannot be assigned to any specific lineage. The lack of well-defined, pathogenetically relevant diagnostic criteria makes the clinical handling of MPAL patients challenging. We herein report the genetic findings in bone marrow cells from two pediatric MPAL patients.</p><p><strong>Patients and methods: </strong>Bone marrow cells were examined using G-banding, array comparative genomic hybridization, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization.</p><p><strong>Results: </strong>In the first patient, the genetic analyses revealed structural aberrations of chromosomal bands 8p11, 10p11, 11q21, and 17p11, the chimeras MLLT10::PICALM and PICALM::MLLT10, and imbalances (gains/losses) on chromosomes 2, 4, 8, 13, and 21. A submicroscopic deletion in 21q was also found including the RUNX1 locus. In the second patient, there were structural aberrations of chromosome bands 1p32, 8p11, 12p13, 20p13, and 20q11, the chimeras ETV6::LEXM and NCOA6::ETV6, and imbalances on chromosomes 2, 8, 11, 12, 16, 19, X, and Y.</p><p><strong>Conclusion: </strong>The leukemic cells from both MPAL patients carried chromosome aberrations resulting in fusion genes as well as genomic imbalances resulting in gain and losses of many gene loci. The detected fusion genes probably represent the main leukemogenic events, although the gains and losses are also likely to play a role in leukemogenesis.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"21 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20424\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genetic Characterization of Pediatric Mixed Phenotype Acute Leukemia (MPAL).
Background/aim: Mixed phenotype acute leukemia (MPAL) is a rare hematologic malignancy in which the leukemic cells cannot be assigned to any specific lineage. The lack of well-defined, pathogenetically relevant diagnostic criteria makes the clinical handling of MPAL patients challenging. We herein report the genetic findings in bone marrow cells from two pediatric MPAL patients.
Patients and methods: Bone marrow cells were examined using G-banding, array comparative genomic hybridization, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization.
Results: In the first patient, the genetic analyses revealed structural aberrations of chromosomal bands 8p11, 10p11, 11q21, and 17p11, the chimeras MLLT10::PICALM and PICALM::MLLT10, and imbalances (gains/losses) on chromosomes 2, 4, 8, 13, and 21. A submicroscopic deletion in 21q was also found including the RUNX1 locus. In the second patient, there were structural aberrations of chromosome bands 1p32, 8p11, 12p13, 20p13, and 20q11, the chimeras ETV6::LEXM and NCOA6::ETV6, and imbalances on chromosomes 2, 8, 11, 12, 16, 19, X, and Y.
Conclusion: The leukemic cells from both MPAL patients carried chromosome aberrations resulting in fusion genes as well as genomic imbalances resulting in gain and losses of many gene loci. The detected fusion genes probably represent the main leukemogenic events, although the gains and losses are also likely to play a role in leukemogenesis.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.