使用 Python 跟踪和分析抗菌药耐药性趋势的方法:印度古吉拉特邦阿南德试点研究--2022 年 5 月至 2023 年 8 月。

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES Microbial drug resistance Pub Date : 2024-01-01 Epub Date: 2023-12-28 DOI:10.1089/mdr.2023.0057
Priyanshu Khound, Himanshu Pandya, Rupal Patel, Naimika Patel, Siddhi A Darji, Purvi Trivedi, Vandan Mehta, Avani Raulji, Devjani Banerjee
{"title":"使用 Python 跟踪和分析抗菌药耐药性趋势的方法:印度古吉拉特邦阿南德试点研究--2022 年 5 月至 2023 年 8 月。","authors":"Priyanshu Khound, Himanshu Pandya, Rupal Patel, Naimika Patel, Siddhi A Darji, Purvi Trivedi, Vandan Mehta, Avani Raulji, Devjani Banerjee","doi":"10.1089/mdr.2023.0057","DOIUrl":null,"url":null,"abstract":"<p><p>The present work deals with the analysis and monitoring of bacterial resistance in using Python for the state of Gujarat, India, where occurrences of drug-resistant bacteria are prevalent. This will provide an insight into the portfolio of drug-resistant bacteria reported, which can be used to track resistance behavior and to suggest a treatment regime for the particular bacteria. The present analysis has been done using Python on Jupyter Notebook as the integrated development environment and its data analysis libraries such as Pandas, Seaborn, and Matplotlib. The data have been loaded from excel file using Pandas and cleaned to transform features into required format. Seaborn and Matplotlib have been used to create data visualizations and represent the data inexplicable manner using graphs, plots, and tables. This program can be used to study disaster epidemiology, tracking, analyzing, and surveillance of antimicrobial resistance with a proper system integration approach.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"1-20"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach to Track and Analyze the Trend of Antimicrobial Resistance Using Python: A Pilot Study for Anand, Gujarat, India-May 2022-August 2023.\",\"authors\":\"Priyanshu Khound, Himanshu Pandya, Rupal Patel, Naimika Patel, Siddhi A Darji, Purvi Trivedi, Vandan Mehta, Avani Raulji, Devjani Banerjee\",\"doi\":\"10.1089/mdr.2023.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present work deals with the analysis and monitoring of bacterial resistance in using Python for the state of Gujarat, India, where occurrences of drug-resistant bacteria are prevalent. This will provide an insight into the portfolio of drug-resistant bacteria reported, which can be used to track resistance behavior and to suggest a treatment regime for the particular bacteria. The present analysis has been done using Python on Jupyter Notebook as the integrated development environment and its data analysis libraries such as Pandas, Seaborn, and Matplotlib. The data have been loaded from excel file using Pandas and cleaned to transform features into required format. Seaborn and Matplotlib have been used to create data visualizations and represent the data inexplicable manner using graphs, plots, and tables. This program can be used to study disaster epidemiology, tracking, analyzing, and surveillance of antimicrobial resistance with a proper system integration approach.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2023.0057\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2023.0057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用 Python 对印度古吉拉特邦的细菌耐药性进行分析和监测。这将有助于深入了解所报告的耐药细菌组合,可用于跟踪耐药行为并提出针对特定细菌的治疗方案。本分析使用 Jupyter Notebook 上的 Python 作为集成开发环境,并使用 Pandas、Seaborn 和 Matplotlib 等数据分析库。数据使用 Pandas 从 excel 文件加载,并经过清理将特征转换为所需格式。Seaborn 和 Matplotlib 用于创建数据可视化,并使用图形、绘图和表格以难以理解的方式表示数据。通过适当的系统集成方法,该程序可用于研究灾害流行病学、抗菌药耐药性的跟踪、分析和监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Approach to Track and Analyze the Trend of Antimicrobial Resistance Using Python: A Pilot Study for Anand, Gujarat, India-May 2022-August 2023.

The present work deals with the analysis and monitoring of bacterial resistance in using Python for the state of Gujarat, India, where occurrences of drug-resistant bacteria are prevalent. This will provide an insight into the portfolio of drug-resistant bacteria reported, which can be used to track resistance behavior and to suggest a treatment regime for the particular bacteria. The present analysis has been done using Python on Jupyter Notebook as the integrated development environment and its data analysis libraries such as Pandas, Seaborn, and Matplotlib. The data have been loaded from excel file using Pandas and cleaned to transform features into required format. Seaborn and Matplotlib have been used to create data visualizations and represent the data inexplicable manner using graphs, plots, and tables. This program can be used to study disaster epidemiology, tracking, analyzing, and surveillance of antimicrobial resistance with a proper system integration approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
期刊最新文献
In-Vitro Activity of Dimercaptosuccinic Acid in Combination with Carbapenems Against Carbapenem-Resistant Pseudomonas aeruginosa. A Selective Culture Medium for Screening Aztreonam-Avibactam Resistance in Enterobacterales and Pseudomonas aeruginosa. Deciphering the Resistome and Mobiolme of an Avian-Associated Enterococus faecalis ST249 Clone that Acquired Vancomycin Resistance Isolated from Neutropenic Patient in Tunisia. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Emergence of Salmonella enterica Serovar Heidelberg Producing OXA 48 Carbapenemase in Eastern Algeria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1