Péter Fritz, Réka Fritz, Pál Bóday, Ádám Bóday, Emese Bató, Péter Kesserű, Csilla Oláh
{"title":"肠道微生物群组成:运动表现与蛋白质吸收之间的联系?","authors":"Péter Fritz, Réka Fritz, Pál Bóday, Ádám Bóday, Emese Bató, Péter Kesserű, Csilla Oláh","doi":"10.1080/15502783.2023.2297992","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sufficient protein intake is essential for adequate physical condition and athletic performance. However, numerous factors can influence the absorption of consumed protein, including timing, type of protein intake, and gut microbiota. In the present study, elite male water polo players consumed a plant-based, vegan protein supplement with (<i>n</i> = 10) or without (<i>n</i> = 10) pre- and probiotics daily during the 31-day study period.</p><p><strong>Methods: </strong>We determined the anthropometric characteristics and body composition, dietary habits, gut microbiota composition, and blood parameters of the players at the beginning and at the end of the study. Body composition parameters were analyzed using the InBody 970 bioimpedance analyzer. Gut microbiome composition was determined from stool samples by metagenome sequencing. Paired and unpaired t-tests were used to determine differences between body composition and blood parameters within the groups and between the two groups at the two different sampling times. The Wilcoxon test was used to determine the change in bacterial composition during the study. Correlations between changes in body composition, blood parameters, and taxonomic groups were analyzed using a linear correlation calculation.</p><p><strong>Results: </strong>Skeletal muscle mass (<i>p</i> < 0.001), body cell mass (<i>p</i> = 0.002), arm circumference (<i>p</i> = 0.003), and protein mass (<i>p</i> < 0.001) increased, while body fat mass (<i>p</i> = 0.004) decreased significantly in the intervention group which consumed pre- and probiotics in addition to protein supplement. Activated acetate (reductive TCA cycle I) and propionate (pyruvate fermentation to propanoate I) pathways correlated positively with increased skeletal muscle mass (<i>p</i> < 0.01 and <i>p</i> < 0.05), and the relative abundance of butyrate-producing species showed a significant positive correlation with changes in body fat mass in the intervention group (<i>p</i> < 0.05). These correlations were not observed in the control group without the intake of pre- and probiotics.</p><p><strong>Conclusions: </strong>The composition of the gut microbiota may influence protein absorption and therefore body composition and consequently physical condition and sports performance.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2297992"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut microbiome composition: link between sports performance and protein absorption?\",\"authors\":\"Péter Fritz, Réka Fritz, Pál Bóday, Ádám Bóday, Emese Bató, Péter Kesserű, Csilla Oláh\",\"doi\":\"10.1080/15502783.2023.2297992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sufficient protein intake is essential for adequate physical condition and athletic performance. However, numerous factors can influence the absorption of consumed protein, including timing, type of protein intake, and gut microbiota. In the present study, elite male water polo players consumed a plant-based, vegan protein supplement with (<i>n</i> = 10) or without (<i>n</i> = 10) pre- and probiotics daily during the 31-day study period.</p><p><strong>Methods: </strong>We determined the anthropometric characteristics and body composition, dietary habits, gut microbiota composition, and blood parameters of the players at the beginning and at the end of the study. Body composition parameters were analyzed using the InBody 970 bioimpedance analyzer. Gut microbiome composition was determined from stool samples by metagenome sequencing. Paired and unpaired t-tests were used to determine differences between body composition and blood parameters within the groups and between the two groups at the two different sampling times. The Wilcoxon test was used to determine the change in bacterial composition during the study. Correlations between changes in body composition, blood parameters, and taxonomic groups were analyzed using a linear correlation calculation.</p><p><strong>Results: </strong>Skeletal muscle mass (<i>p</i> < 0.001), body cell mass (<i>p</i> = 0.002), arm circumference (<i>p</i> = 0.003), and protein mass (<i>p</i> < 0.001) increased, while body fat mass (<i>p</i> = 0.004) decreased significantly in the intervention group which consumed pre- and probiotics in addition to protein supplement. Activated acetate (reductive TCA cycle I) and propionate (pyruvate fermentation to propanoate I) pathways correlated positively with increased skeletal muscle mass (<i>p</i> < 0.01 and <i>p</i> < 0.05), and the relative abundance of butyrate-producing species showed a significant positive correlation with changes in body fat mass in the intervention group (<i>p</i> < 0.05). These correlations were not observed in the control group without the intake of pre- and probiotics.</p><p><strong>Conclusions: </strong>The composition of the gut microbiota may influence protein absorption and therefore body composition and consequently physical condition and sports performance.</p>\",\"PeriodicalId\":17400,\"journal\":{\"name\":\"Journal of the International Society of Sports Nutrition\",\"volume\":\"21 1\",\"pages\":\"2297992\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Society of Sports Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15502783.2023.2297992\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Society of Sports Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15502783.2023.2297992","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
摘要
背景:摄入充足的蛋白质对保持良好的身体状况和运动表现至关重要。然而,影响蛋白质吸收的因素有很多,包括时间、蛋白质摄入类型和肠道微生物群。在本研究中,精英男子水球运动员在为期 31 天的研究期间,每天摄入含有(n = 10)或不含有(n = 10)益生菌前和益生菌的植物性素食蛋白质补充剂:我们测定了研究开始和结束时球员的人体测量特征和身体成分、饮食习惯、肠道微生物群成分和血液参数。使用 InBody 970 生物阻抗分析仪分析了身体成分参数。通过元基因组测序从粪便样本中确定了肠道微生物组的组成。采用配对和非配对 t 检验来确定组内以及两组之间在两个不同采样时间的身体成分和血液参数的差异。Wilcoxon 检验用于确定研究期间细菌组成的变化。采用线性相关计算方法分析了身体成分、血液参数和分类组之间的相关性:结果:除了补充蛋白质外,还食用益生菌的干预组的骨骼肌质量(p p = 0.002)、臂围(p = 0.003)和蛋白质质量(p p = 0.004)显著下降。激活的醋酸盐(还原性 TCA 循环 I)和丙酸盐(丙酮酸发酵成丙酸盐 I)途径与骨骼肌质量的增加呈正相关(p p p 结论):肠道微生物群的组成可能会影响蛋白质的吸收,从而影响身体组成,进而影响身体状况和运动表现。
Gut microbiome composition: link between sports performance and protein absorption?
Background: Sufficient protein intake is essential for adequate physical condition and athletic performance. However, numerous factors can influence the absorption of consumed protein, including timing, type of protein intake, and gut microbiota. In the present study, elite male water polo players consumed a plant-based, vegan protein supplement with (n = 10) or without (n = 10) pre- and probiotics daily during the 31-day study period.
Methods: We determined the anthropometric characteristics and body composition, dietary habits, gut microbiota composition, and blood parameters of the players at the beginning and at the end of the study. Body composition parameters were analyzed using the InBody 970 bioimpedance analyzer. Gut microbiome composition was determined from stool samples by metagenome sequencing. Paired and unpaired t-tests were used to determine differences between body composition and blood parameters within the groups and between the two groups at the two different sampling times. The Wilcoxon test was used to determine the change in bacterial composition during the study. Correlations between changes in body composition, blood parameters, and taxonomic groups were analyzed using a linear correlation calculation.
Results: Skeletal muscle mass (p < 0.001), body cell mass (p = 0.002), arm circumference (p = 0.003), and protein mass (p < 0.001) increased, while body fat mass (p = 0.004) decreased significantly in the intervention group which consumed pre- and probiotics in addition to protein supplement. Activated acetate (reductive TCA cycle I) and propionate (pyruvate fermentation to propanoate I) pathways correlated positively with increased skeletal muscle mass (p < 0.01 and p < 0.05), and the relative abundance of butyrate-producing species showed a significant positive correlation with changes in body fat mass in the intervention group (p < 0.05). These correlations were not observed in the control group without the intake of pre- and probiotics.
Conclusions: The composition of the gut microbiota may influence protein absorption and therefore body composition and consequently physical condition and sports performance.
期刊介绍:
Journal of the International Society of Sports Nutrition (JISSN) focuses on the acute and chronic effects of sports nutrition and supplementation strategies on body composition, physical performance and metabolism. JISSN is aimed at researchers and sport enthusiasts focused on delivering knowledge on exercise and nutrition on health, disease, rehabilitation, training, and performance. The journal provides a platform on which readers can determine nutritional strategies that may enhance exercise and/or training adaptations leading to improved health and performance.