{"title":"评估可压缩混合层大涡流模拟中的各向异性最小耗散、σ和调制梯度子网格尺度模型","authors":"Peddamma Vishwaja, Niranjan S. Ghaisas","doi":"10.1080/14685248.2023.2297901","DOIUrl":null,"url":null,"abstract":"We evaluate three subgrid-scale (SGS) models in large eddy simulations (LES) of compressible mixing layers up to convective Mach number (Mc) 2.0. The initial momentum-thickness based Reynolds numbe...","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"36 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating anisotropic minimum dissipation, sigma and modulated gradient subgrid-scale models in large-eddy simulation of compressible mixing layers\",\"authors\":\"Peddamma Vishwaja, Niranjan S. Ghaisas\",\"doi\":\"10.1080/14685248.2023.2297901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate three subgrid-scale (SGS) models in large eddy simulations (LES) of compressible mixing layers up to convective Mach number (Mc) 2.0. The initial momentum-thickness based Reynolds numbe...\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2023.2297901\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2297901","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Evaluating anisotropic minimum dissipation, sigma and modulated gradient subgrid-scale models in large-eddy simulation of compressible mixing layers
We evaluate three subgrid-scale (SGS) models in large eddy simulations (LES) of compressible mixing layers up to convective Mach number (Mc) 2.0. The initial momentum-thickness based Reynolds numbe...
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.