Fangyu Yu, Peng Zhang, Xianghua Ding, Tun Lu, Ning Gu
{"title":"BNoteHelper:基于笔记的提纲生成工具,用于视频共享平台上的结构化学习","authors":"Fangyu Yu, Peng Zhang, Xianghua Ding, Tun Lu, Ning Gu","doi":"10.1145/3638775","DOIUrl":null,"url":null,"abstract":"<p>Usually generated by ordinary users and often not particularly designed for learning, the videos on video sharing platforms are mostly not structured enough to support learning purposes, although they are increasingly leveraged for that. Most existing studies attempt to structure the video using video summarization techniques. However, these methods focus on extracting information from within the video and aiming to consume the video itself. In this paper, we design and implement BNoteHelper, a note-based video outline prototype which generates outline titles by extracting user-generated notes on Bilibili, using the BART model fine-tuned on a built dataset. As a browser plugin, BNoteHelper provides users with video overview and navigation as well as note-taking template, via two main features: outline table and navigation marker. The model and prototype are evaluated through automatic and human evaluations. The automatic evaluation reveals that, both before and after fine-tuning, the BART model outperforms T5-Pegasus in BLEU and Perplexity metrics. Also, the results from user feedback reveal that the generation outline sourced from notes is preferred by users than that sourced from video captions due to its more concise, clear, and accurate characteristics, but also too general with less details and diversities sometimes. Two features of the video outline are also found to have respective advantages specially in holistic and fine-grained aspects. Based on these results, we propose insights into designing a video summary from the user-generated creation perspective, customizing it based on video types, and strengthening the advantages of its different visual styles on video sharing platforms.</p>","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"64 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BNoteHelper: A Note-Based Outline Generation Tool for Structured Learning on Video Sharing Platforms\",\"authors\":\"Fangyu Yu, Peng Zhang, Xianghua Ding, Tun Lu, Ning Gu\",\"doi\":\"10.1145/3638775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Usually generated by ordinary users and often not particularly designed for learning, the videos on video sharing platforms are mostly not structured enough to support learning purposes, although they are increasingly leveraged for that. Most existing studies attempt to structure the video using video summarization techniques. However, these methods focus on extracting information from within the video and aiming to consume the video itself. In this paper, we design and implement BNoteHelper, a note-based video outline prototype which generates outline titles by extracting user-generated notes on Bilibili, using the BART model fine-tuned on a built dataset. As a browser plugin, BNoteHelper provides users with video overview and navigation as well as note-taking template, via two main features: outline table and navigation marker. The model and prototype are evaluated through automatic and human evaluations. The automatic evaluation reveals that, both before and after fine-tuning, the BART model outperforms T5-Pegasus in BLEU and Perplexity metrics. Also, the results from user feedback reveal that the generation outline sourced from notes is preferred by users than that sourced from video captions due to its more concise, clear, and accurate characteristics, but also too general with less details and diversities sometimes. Two features of the video outline are also found to have respective advantages specially in holistic and fine-grained aspects. Based on these results, we propose insights into designing a video summary from the user-generated creation perspective, customizing it based on video types, and strengthening the advantages of its different visual styles on video sharing platforms.</p>\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638775\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638775","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
BNoteHelper: A Note-Based Outline Generation Tool for Structured Learning on Video Sharing Platforms
Usually generated by ordinary users and often not particularly designed for learning, the videos on video sharing platforms are mostly not structured enough to support learning purposes, although they are increasingly leveraged for that. Most existing studies attempt to structure the video using video summarization techniques. However, these methods focus on extracting information from within the video and aiming to consume the video itself. In this paper, we design and implement BNoteHelper, a note-based video outline prototype which generates outline titles by extracting user-generated notes on Bilibili, using the BART model fine-tuned on a built dataset. As a browser plugin, BNoteHelper provides users with video overview and navigation as well as note-taking template, via two main features: outline table and navigation marker. The model and prototype are evaluated through automatic and human evaluations. The automatic evaluation reveals that, both before and after fine-tuning, the BART model outperforms T5-Pegasus in BLEU and Perplexity metrics. Also, the results from user feedback reveal that the generation outline sourced from notes is preferred by users than that sourced from video captions due to its more concise, clear, and accurate characteristics, but also too general with less details and diversities sometimes. Two features of the video outline are also found to have respective advantages specially in holistic and fine-grained aspects. Based on these results, we propose insights into designing a video summary from the user-generated creation perspective, customizing it based on video types, and strengthening the advantages of its different visual styles on video sharing platforms.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.