{"title":"声学噪声导致未下垂机翼上超音速边界层的转变","authors":"P. V. Chuvakhov, I. V. Egorov","doi":"10.1134/S1028335823040031","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present the results of direct numerical modeling of the process of susceptibility of a supersonic boundary layer over an unswept wing with a thin parabolic profile to acoustic noise of various intensities. It was demonstrated that acoustic noise can cause a laminar–turbulent transition over the unswept wing of a supersonic passenger aircraft.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 4","pages":"131 - 134"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition of a Supersonic Boundary Layer Over an Unswept Wing Due to Acoustic Noise\",\"authors\":\"P. V. Chuvakhov, I. V. Egorov\",\"doi\":\"10.1134/S1028335823040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present the results of direct numerical modeling of the process of susceptibility of a supersonic boundary layer over an unswept wing with a thin parabolic profile to acoustic noise of various intensities. It was demonstrated that acoustic noise can cause a laminar–turbulent transition over the unswept wing of a supersonic passenger aircraft.</p>\",\"PeriodicalId\":533,\"journal\":{\"name\":\"Doklady Physics\",\"volume\":\"68 4\",\"pages\":\"131 - 134\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1028335823040031\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335823040031","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Transition of a Supersonic Boundary Layer Over an Unswept Wing Due to Acoustic Noise
In this paper, we present the results of direct numerical modeling of the process of susceptibility of a supersonic boundary layer over an unswept wing with a thin parabolic profile to acoustic noise of various intensities. It was demonstrated that acoustic noise can cause a laminar–turbulent transition over the unswept wing of a supersonic passenger aircraft.
期刊介绍:
Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.