Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, Xizhi Tan
{"title":"学习增强机制设计:利用预测确定设施位置","authors":"Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, Xizhi Tan","doi":"10.1287/moor.2022.0225","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate.Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907].Supplemental Material: The e-companion is available at https://doi.org/10.1287/moor.2022.0225 .","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location\",\"authors\":\"Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, Xizhi Tan\",\"doi\":\"10.1287/moor.2022.0225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate.Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907].Supplemental Material: The e-companion is available at https://doi.org/10.1287/moor.2022.0225 .\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0225\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0225","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location
In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate.Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907].Supplemental Material: The e-companion is available at https://doi.org/10.1287/moor.2022.0225 .
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.