{"title":"利用先进的机器学习模型和多变量输入预测急诊室占用率","authors":"","doi":"10.1016/j.ijforecast.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality. Forecasting future service demand has the potential to improve patient outcomes. Despite active research on the subject, proposed forecasting models have become outdated, due to the quick influx of advanced machine learning models and because the amount of multivariable input data has been limited. In this study, we document the performance of a set of advanced machine learning models in forecasting ED occupancy 24 h ahead. We use electronic health record data from a large, combined ED with an extensive set of explanatory variables, including the availability of beds in catchment area hospitals, traffic data from local observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT, and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The inclusion of the explanatory variables enhances the performance of TFT and DeepAR but fails to significantly improve the performance of LightGBM. To the best of our knowledge, this is the first study to extensively document the superiority of machine learning over statistical benchmarks in the context of ED forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001346/pdfft?md5=ce6f2f913f2f56e0a000145a128a4966&pid=1-s2.0-S0169207023001346-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Forecasting emergency department occupancy with advanced machine learning models and multivariable input\",\"authors\":\"\",\"doi\":\"10.1016/j.ijforecast.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality. Forecasting future service demand has the potential to improve patient outcomes. Despite active research on the subject, proposed forecasting models have become outdated, due to the quick influx of advanced machine learning models and because the amount of multivariable input data has been limited. In this study, we document the performance of a set of advanced machine learning models in forecasting ED occupancy 24 h ahead. We use electronic health record data from a large, combined ED with an extensive set of explanatory variables, including the availability of beds in catchment area hospitals, traffic data from local observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT, and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The inclusion of the explanatory variables enhances the performance of TFT and DeepAR but fails to significantly improve the performance of LightGBM. To the best of our knowledge, this is the first study to extensively document the superiority of machine learning over statistical benchmarks in the context of ED forecasting.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001346/pdfft?md5=ce6f2f913f2f56e0a000145a128a4966&pid=1-s2.0-S0169207023001346-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001346\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001346","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Forecasting emergency department occupancy with advanced machine learning models and multivariable input
Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality. Forecasting future service demand has the potential to improve patient outcomes. Despite active research on the subject, proposed forecasting models have become outdated, due to the quick influx of advanced machine learning models and because the amount of multivariable input data has been limited. In this study, we document the performance of a set of advanced machine learning models in forecasting ED occupancy 24 h ahead. We use electronic health record data from a large, combined ED with an extensive set of explanatory variables, including the availability of beds in catchment area hospitals, traffic data from local observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT, and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The inclusion of the explanatory variables enhances the performance of TFT and DeepAR but fails to significantly improve the performance of LightGBM. To the best of our knowledge, this is the first study to extensively document the superiority of machine learning over statistical benchmarks in the context of ED forecasting.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.