{"title":"3C 84 的吸积-喷流模型:解读光谱能量分布和法拉第旋转测量值","authors":"Jianchao Feng, Xiaowen Wang, Rui Jing","doi":"10.1002/asna.20230175","DOIUrl":null,"url":null,"abstract":"<p>3C 84 is a well-known supermassive black hole that can be used to explore jet and accretion physics. In this work, we model the multiwavelength spectral energy distribution (SED) of the 3C 84, and find that the SED is difficult to fit with pure advection dominated accretion flow (ADAF) or pure jet model. Using a coupled ADAF-jet model to fit the SED of 3C 84, it is found that the radio emission and the millimeter emission can be naturally reproduced by the synchrotron radiation of nonthermal electrons in the jet, and that the X-ray emission may predominantly come from inverse Compton radiation from electrons in ADAF. According to the Rotation Measure (RM) obtained by the polarization observation, we consider the possible location of the polarizing source and found that the calculated RM in the jet is roughly consistent with the observational constraints. These results will help us better understand jets produced by black holes.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accretion-jet model for 3C 84: Interpreting the spectral energy distribution and Faraday rotation measure\",\"authors\":\"Jianchao Feng, Xiaowen Wang, Rui Jing\",\"doi\":\"10.1002/asna.20230175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>3C 84 is a well-known supermassive black hole that can be used to explore jet and accretion physics. In this work, we model the multiwavelength spectral energy distribution (SED) of the 3C 84, and find that the SED is difficult to fit with pure advection dominated accretion flow (ADAF) or pure jet model. Using a coupled ADAF-jet model to fit the SED of 3C 84, it is found that the radio emission and the millimeter emission can be naturally reproduced by the synchrotron radiation of nonthermal electrons in the jet, and that the X-ray emission may predominantly come from inverse Compton radiation from electrons in ADAF. According to the Rotation Measure (RM) obtained by the polarization observation, we consider the possible location of the polarizing source and found that the calculated RM in the jet is roughly consistent with the observational constraints. These results will help us better understand jets produced by black holes.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 2-3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230175\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230175","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
3C 84是一个著名的超大质量黑洞,可用于探索喷流和吸积物理学。在这项工作中,我们对 3C 84 的多波长光谱能量分布(SED)进行了建模,发现该 SED 难以用纯平流主导吸积流(ADAF)或纯喷流模型来拟合。利用一个耦合的 ADAF 喷射模型来拟合 3C 84 的 SED,发现射电辐射和毫米波辐射可以通过喷流中非热电子的同步辐射自然地再现,而 X 射线辐射可能主要来自 ADAF 中电子的反康普顿辐射。根据偏振观测得到的旋转量(RM),我们考虑了偏振源的可能位置,发现计算得到的喷流中的RM与观测约束基本一致。这些结果将有助于我们更好地理解黑洞产生的喷流。
An accretion-jet model for 3C 84: Interpreting the spectral energy distribution and Faraday rotation measure
3C 84 is a well-known supermassive black hole that can be used to explore jet and accretion physics. In this work, we model the multiwavelength spectral energy distribution (SED) of the 3C 84, and find that the SED is difficult to fit with pure advection dominated accretion flow (ADAF) or pure jet model. Using a coupled ADAF-jet model to fit the SED of 3C 84, it is found that the radio emission and the millimeter emission can be naturally reproduced by the synchrotron radiation of nonthermal electrons in the jet, and that the X-ray emission may predominantly come from inverse Compton radiation from electrons in ADAF. According to the Rotation Measure (RM) obtained by the polarization observation, we consider the possible location of the polarizing source and found that the calculated RM in the jet is roughly consistent with the observational constraints. These results will help us better understand jets produced by black holes.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.