DB-BERT:让数据库调整工具 "读懂 "手册

Immanuel Trummer
{"title":"DB-BERT:让数据库调整工具 \"读懂 \"手册","authors":"Immanuel Trummer","doi":"10.1007/s00778-023-00831-y","DOIUrl":null,"url":null,"abstract":"<p>DB-BERT is a database tuning tool that exploits information gained via natural language analysis of manuals and other relevant text documents. It uses text to identify database system parameters to tune as well as recommended parameter values. DB-BERT applies large, pre-trained language models (specifically, the BERT model) for text analysis. During an initial training phase, it fine-tunes model weights in order to translate natural language hints into recommended settings. At run time, DB-BERT learns to aggregate, adapt, and prioritize hints to achieve optimal performance for a specific database system and benchmark. Both phases are iterative and use reinforcement learning to guide the selection of tuning settings to evaluate (penalizing settings that the database system rejects while rewarding settings that improve performance). In our experiments, we leverage hundreds of text documents about database tuning as input for DB-BERT. We compare DB-BERT against various baselines, considering different benchmarks (TPC-C and TPC-H), metrics (throughput and run time), as well as database systems (PostgreSQL and MySQL). The experiments demonstrate clearly that DB-BERT benefits from combining general information about database tuning, mined from text documents, with scenario-specific insights, gained via trial runs. The full source code of DB-BERT is available online at https://itrummer.github.io/dbbert/.</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DB-BERT: making database tuning tools “read” the manual\",\"authors\":\"Immanuel Trummer\",\"doi\":\"10.1007/s00778-023-00831-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>DB-BERT is a database tuning tool that exploits information gained via natural language analysis of manuals and other relevant text documents. It uses text to identify database system parameters to tune as well as recommended parameter values. DB-BERT applies large, pre-trained language models (specifically, the BERT model) for text analysis. During an initial training phase, it fine-tunes model weights in order to translate natural language hints into recommended settings. At run time, DB-BERT learns to aggregate, adapt, and prioritize hints to achieve optimal performance for a specific database system and benchmark. Both phases are iterative and use reinforcement learning to guide the selection of tuning settings to evaluate (penalizing settings that the database system rejects while rewarding settings that improve performance). In our experiments, we leverage hundreds of text documents about database tuning as input for DB-BERT. We compare DB-BERT against various baselines, considering different benchmarks (TPC-C and TPC-H), metrics (throughput and run time), as well as database systems (PostgreSQL and MySQL). The experiments demonstrate clearly that DB-BERT benefits from combining general information about database tuning, mined from text documents, with scenario-specific insights, gained via trial runs. The full source code of DB-BERT is available online at https://itrummer.github.io/dbbert/.</p>\",\"PeriodicalId\":501532,\"journal\":{\"name\":\"The VLDB Journal\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The VLDB Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00778-023-00831-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-023-00831-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DB-BERT 是一种数据库调整工具,可利用通过对手册和其他相关文本文档进行自然语言分析而获得的信息。它利用文本来识别需要调整的数据库系统参数以及推荐的参数值。DB-BERT 应用预先训练好的大型语言模型(特别是 BERT 模型)进行文本分析。在初始训练阶段,它会对模型权重进行微调,以便将自然语言提示转化为推荐设置。在运行阶段,DB-BERT 会学习汇总、调整和优先处理提示,以实现特定数据库系统和基准的最佳性能。这两个阶段都是迭代式的,并使用强化学习来指导选择要评估的调整设置(惩罚数据库系统拒绝接受的设置,同时奖励提高性能的设置)。在实验中,我们利用数百篇有关数据库调整的文本文档作为 DB-BERT 的输入。我们将 DB-BERT 与不同的基准(TPC-C 和 TPC-H)、指标(吞吐量和运行时间)以及数据库系统(PostgreSQL 和 MySQL)进行了比较。实验清楚地表明,DB-BERT 将从文本文档中挖掘出的数据库调优一般信息与通过试运行获得的特定场景洞察力相结合,从中受益匪浅。DB-BERT 的完整源代码可从 https://itrummer.github.io/dbbert/ 在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DB-BERT: making database tuning tools “read” the manual

DB-BERT is a database tuning tool that exploits information gained via natural language analysis of manuals and other relevant text documents. It uses text to identify database system parameters to tune as well as recommended parameter values. DB-BERT applies large, pre-trained language models (specifically, the BERT model) for text analysis. During an initial training phase, it fine-tunes model weights in order to translate natural language hints into recommended settings. At run time, DB-BERT learns to aggregate, adapt, and prioritize hints to achieve optimal performance for a specific database system and benchmark. Both phases are iterative and use reinforcement learning to guide the selection of tuning settings to evaluate (penalizing settings that the database system rejects while rewarding settings that improve performance). In our experiments, we leverage hundreds of text documents about database tuning as input for DB-BERT. We compare DB-BERT against various baselines, considering different benchmarks (TPC-C and TPC-H), metrics (throughput and run time), as well as database systems (PostgreSQL and MySQL). The experiments demonstrate clearly that DB-BERT benefits from combining general information about database tuning, mined from text documents, with scenario-specific insights, gained via trial runs. The full source code of DB-BERT is available online at https://itrummer.github.io/dbbert/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1