{"title":"基于两阶段信号分解法和 LSTM 混合模型的中国珠江径流时间序列预测","authors":"Zhao Guo, Qian-Qian Zhang, Nan Li, Yun-Qiu Zhai, Wen-Tao Teng, Shuang-Shuang Liu, Guang-Guo Ying","doi":"10.2166/nh.2023.069","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00069gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00069gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), and local mean decomposition (LMD), to predict the daily runoff of the Pearl River in China. The results indicate CEEMDAN's broader signal decomposition applicability for runoff series preprocessing, while VMD is simpler to extract high-runoff characteristics. VMD–WT–LSTM is appropriate for predicting high and median runoff, whereas CEEMDAN–WT–LSTM is better for low-runoff and high and median runoffs with low-violent fluctuations. These hybrid models provide satisfactory predictions for NSE and <em>R</em><sup>2</sup> indicators, and 97.2% of indicators fall within the acceptable range for high-runoff predictions. The hybrid models outperform traditional and standalone models in high-runoff but none of the decomposition methods in this research can identify low-runoff sub-sequence. This study provided runoff prediction methods requiring fewer data and processing time, and these methods are promising alternatives for daily runoff prediction in large-scale basins.</p>","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"30 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runoff time series prediction based on hybrid models of two-stage signal decomposition methods and LSTM for the Pearl River in China\",\"authors\":\"Zhao Guo, Qian-Qian Zhang, Nan Li, Yun-Qiu Zhai, Wen-Tao Teng, Shuang-Shuang Liu, Guang-Guo Ying\",\"doi\":\"10.2166/nh.2023.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div data- reveal-group-><div><img alt=\\\"graphic\\\" data-src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\" path-from-xml=\\\"hydrology-d-23-00069gf01.tif\\\" src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\\\"data-reveal\\\"><div><img alt=\\\"graphic\\\" data-src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\" path-from-xml=\\\"hydrology-d-23-00069gf01.tif\\\" src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), and local mean decomposition (LMD), to predict the daily runoff of the Pearl River in China. The results indicate CEEMDAN's broader signal decomposition applicability for runoff series preprocessing, while VMD is simpler to extract high-runoff characteristics. VMD–WT–LSTM is appropriate for predicting high and median runoff, whereas CEEMDAN–WT–LSTM is better for low-runoff and high and median runoffs with low-violent fluctuations. These hybrid models provide satisfactory predictions for NSE and <em>R</em><sup>2</sup> indicators, and 97.2% of indicators fall within the acceptable range for high-runoff predictions. The hybrid models outperform traditional and standalone models in high-runoff but none of the decomposition methods in this research can identify low-runoff sub-sequence. This study provided runoff prediction methods requiring fewer data and processing time, and these methods are promising alternatives for daily runoff prediction in large-scale basins.</p>\",\"PeriodicalId\":13096,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.069\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.069","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Runoff time series prediction based on hybrid models of two-stage signal decomposition methods and LSTM for the Pearl River in China
View largeDownload slide
View largeDownload slide
Close modal
Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), and local mean decomposition (LMD), to predict the daily runoff of the Pearl River in China. The results indicate CEEMDAN's broader signal decomposition applicability for runoff series preprocessing, while VMD is simpler to extract high-runoff characteristics. VMD–WT–LSTM is appropriate for predicting high and median runoff, whereas CEEMDAN–WT–LSTM is better for low-runoff and high and median runoffs with low-violent fluctuations. These hybrid models provide satisfactory predictions for NSE and R2 indicators, and 97.2% of indicators fall within the acceptable range for high-runoff predictions. The hybrid models outperform traditional and standalone models in high-runoff but none of the decomposition methods in this research can identify low-runoff sub-sequence. This study provided runoff prediction methods requiring fewer data and processing time, and these methods are promising alternatives for daily runoff prediction in large-scale basins.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.