基于图神经网络的多尺度地理空间数据沟渠匹配模式识别

IF 3.3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Geocarto International Pub Date : 2023-12-26 DOI:10.1080/10106049.2023.2294900
Zhekun Huang, Haizhong Qian, Xiao Wang, Defu Lin, Junwei Wang, Limin Xie
{"title":"基于图神经网络的多尺度地理空间数据沟渠匹配模式识别","authors":"Zhekun Huang, Haizhong Qian, Xiao Wang, Defu Lin, Junwei Wang, Limin Xie","doi":"10.1080/10106049.2023.2294900","DOIUrl":null,"url":null,"abstract":"Ditches are vital to water system data. To ease the task of matching multi-scale ditch data and enhance accuracy (Acc), it is essential to discern ditch data matching patterns. Despite its importan...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"313 5 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph neural network-based identification of ditch matching patterns across multi-scale geospatial data\",\"authors\":\"Zhekun Huang, Haizhong Qian, Xiao Wang, Defu Lin, Junwei Wang, Limin Xie\",\"doi\":\"10.1080/10106049.2023.2294900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ditches are vital to water system data. To ease the task of matching multi-scale ditch data and enhance accuracy (Acc), it is essential to discern ditch data matching patterns. Despite its importan...\",\"PeriodicalId\":12532,\"journal\":{\"name\":\"Geocarto International\",\"volume\":\"313 5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geocarto International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/10106049.2023.2294900\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geocarto International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/10106049.2023.2294900","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

沟渠对水系数据至关重要。为了简化多尺度沟渠数据的匹配任务并提高准确性(Acc),必须找出沟渠数据的匹配模式。尽管沟渠数据非常重要...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph neural network-based identification of ditch matching patterns across multi-scale geospatial data
Ditches are vital to water system data. To ease the task of matching multi-scale ditch data and enhance accuracy (Acc), it is essential to discern ditch data matching patterns. Despite its importan...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geocarto International
Geocarto International ENVIRONMENTAL SCIENCES-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.30
自引率
13.20%
发文量
407
审稿时长
>12 weeks
期刊介绍: Geocarto International is a professional academic journal serving the world-wide scientific and user community in the fields of remote sensing, GIS, geoscience and environmental sciences. The journal is designed: to promote multidisciplinary research in and application of remote sensing and GIS in geosciences and environmental sciences; to enhance international exchange of information on new developments and applications in the field of remote sensing and GIS and related disciplines; to foster interest in and understanding of science and applications on remote sensing and GIS technologies; and to encourage the publication of timely papers and research results on remote sensing and GIS applications in geosciences and environmental sciences from the world-wide science community. The journal welcomes contributions on the following: precise, illustrated papers on new developments, technologies and applications of remote sensing; research results in remote sensing, GISciences and related disciplines; Reports on new and innovative applications and projects in these areas; and assessment and evaluation of new remote sensing and GIS equipment, software and hardware.
期刊最新文献
A novel deep learning model for extracting arable land from high-resolution remote sensing images in hilly areas: a case study in the Sichuan Basin of Southwest China A regional-level spatiotemporal perspective of land use and land cover change impact on forest aboveground biomass in three gorges reservoir region, China Evaluation of urban ecological benefits utilizing vegetated areas metrics in Nanjing, China Modelling topographic influences on vegetation vigour in the Cradle Nature Reserve, Gauteng province, South Africa Integrating dual evaluation and FLUS model for land use simulation and urban growth boundary delineation in production-living-ecology spaces: a case study of Central Harbin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1