Yunhai Liu, Benteng Che, Xiaowen Wang, Yiyao Luo, Hu Zhang, Ligao Liu, Penghui Xu
{"title":"基于分子动力学模拟探索温度对高熵合金(CoCrFeNiAl0.1)力学性能的影响","authors":"Yunhai Liu, Benteng Che, Xiaowen Wang, Yiyao Luo, Hu Zhang, Ligao Liu, Penghui Xu","doi":"10.1088/1361-651x/ad111f","DOIUrl":null,"url":null,"abstract":"In order to further explore the influence of temperature on the face-centered cubic (FCC) single-phase crystal CoCrFeNiAl<sub>0.1</sub>, we conducted a series of Nano-indentation experiments on CoCrFeNiAl<sub>0.1</sub> at different temperatures. At room temperature, the effects of indentation can convert a portion of CoCrFeNiAl<sub>0.1</sub>’s FCC phase into a funnel-shaped hexagonal close-packed (HCP) phase, resulting less deformation on the sides of the indenter. What we analyzed shows that CoCrFeNiAl<sub>0.1</sub>’s HCP phase has excellent heat resistance and mechanics, allowing CoCrFeNiAl<sub>0.1</sub> to maintain great properties in high-temperature environments. However, if <italic toggle=\"yes\">T</italic> ⩾ 1500 K, high temperature will decrease the number of the HCP phases and dislocation density, leading to an accelerated decline in material strength. This research can provide a theoretical relationship between temperature and microstructural evolution for the research and application of CoCrFeNiAl<sub>0.1</sub> in high-temperature environments.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the effects of temperature on the mechanical properties of high-entropy alloy (CoCrFeNiAl0.1) based on molecular dynamics simulation\",\"authors\":\"Yunhai Liu, Benteng Che, Xiaowen Wang, Yiyao Luo, Hu Zhang, Ligao Liu, Penghui Xu\",\"doi\":\"10.1088/1361-651x/ad111f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to further explore the influence of temperature on the face-centered cubic (FCC) single-phase crystal CoCrFeNiAl<sub>0.1</sub>, we conducted a series of Nano-indentation experiments on CoCrFeNiAl<sub>0.1</sub> at different temperatures. At room temperature, the effects of indentation can convert a portion of CoCrFeNiAl<sub>0.1</sub>’s FCC phase into a funnel-shaped hexagonal close-packed (HCP) phase, resulting less deformation on the sides of the indenter. What we analyzed shows that CoCrFeNiAl<sub>0.1</sub>’s HCP phase has excellent heat resistance and mechanics, allowing CoCrFeNiAl<sub>0.1</sub> to maintain great properties in high-temperature environments. However, if <italic toggle=\\\"yes\\\">T</italic> ⩾ 1500 K, high temperature will decrease the number of the HCP phases and dislocation density, leading to an accelerated decline in material strength. This research can provide a theoretical relationship between temperature and microstructural evolution for the research and application of CoCrFeNiAl<sub>0.1</sub> in high-temperature environments.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad111f\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad111f","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the effects of temperature on the mechanical properties of high-entropy alloy (CoCrFeNiAl0.1) based on molecular dynamics simulation
In order to further explore the influence of temperature on the face-centered cubic (FCC) single-phase crystal CoCrFeNiAl0.1, we conducted a series of Nano-indentation experiments on CoCrFeNiAl0.1 at different temperatures. At room temperature, the effects of indentation can convert a portion of CoCrFeNiAl0.1’s FCC phase into a funnel-shaped hexagonal close-packed (HCP) phase, resulting less deformation on the sides of the indenter. What we analyzed shows that CoCrFeNiAl0.1’s HCP phase has excellent heat resistance and mechanics, allowing CoCrFeNiAl0.1 to maintain great properties in high-temperature environments. However, if T ⩾ 1500 K, high temperature will decrease the number of the HCP phases and dislocation density, leading to an accelerated decline in material strength. This research can provide a theoretical relationship between temperature and microstructural evolution for the research and application of CoCrFeNiAl0.1 in high-temperature environments.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.