{"title":"添加二氧化硅对碱活化高炉渣铅离子吸附能力的影响","authors":"Yosuke Uchida, Takumi Iwaki, Teruhisa Hongo","doi":"10.1134/S1087659623600035","DOIUrl":null,"url":null,"abstract":"<p>Blast furnace slag is produced in large quantities as a by-product in the steel manufacturing process. In this study, a method for synthesizing lead ion adsorbent with high adsorption ability was investigated by alkali activation of the blast furnace slag. A sodium hydroxide aqueous solution was used as an alkali activator, and silica was added to the aqueous solution to improve the adsorption capacity. Alkali activation of the blast furnace slag with the sodium hydroxide aqueous solution yielded lead ion adsorbent. Addition of silica to the sodium hydroxide aqueous solution further increased the lead ion adsorption capacity. Langmuir adsorption isotherms revealed that the highest maximum adsorption capacity of 1658.1 mg-Pb/g was obtained when 5 g of silica was added to 50 mL of the sodium hydroxide aqueous solution. The adsorption capacity for lead ion decreased when more than 10 g of silica was added to the sodium hydroxide aqueous solution.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 6","pages":"651 - 656"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Silica Addition on Lead Ion Adsorption Ability of Alkali-Activated Blast Furnace Slag\",\"authors\":\"Yosuke Uchida, Takumi Iwaki, Teruhisa Hongo\",\"doi\":\"10.1134/S1087659623600035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Blast furnace slag is produced in large quantities as a by-product in the steel manufacturing process. In this study, a method for synthesizing lead ion adsorbent with high adsorption ability was investigated by alkali activation of the blast furnace slag. A sodium hydroxide aqueous solution was used as an alkali activator, and silica was added to the aqueous solution to improve the adsorption capacity. Alkali activation of the blast furnace slag with the sodium hydroxide aqueous solution yielded lead ion adsorbent. Addition of silica to the sodium hydroxide aqueous solution further increased the lead ion adsorption capacity. Langmuir adsorption isotherms revealed that the highest maximum adsorption capacity of 1658.1 mg-Pb/g was obtained when 5 g of silica was added to 50 mL of the sodium hydroxide aqueous solution. The adsorption capacity for lead ion decreased when more than 10 g of silica was added to the sodium hydroxide aqueous solution.</p>\",\"PeriodicalId\":580,\"journal\":{\"name\":\"Glass Physics and Chemistry\",\"volume\":\"49 6\",\"pages\":\"651 - 656\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Physics and Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1087659623600035\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659623600035","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of Silica Addition on Lead Ion Adsorption Ability of Alkali-Activated Blast Furnace Slag
Blast furnace slag is produced in large quantities as a by-product in the steel manufacturing process. In this study, a method for synthesizing lead ion adsorbent with high adsorption ability was investigated by alkali activation of the blast furnace slag. A sodium hydroxide aqueous solution was used as an alkali activator, and silica was added to the aqueous solution to improve the adsorption capacity. Alkali activation of the blast furnace slag with the sodium hydroxide aqueous solution yielded lead ion adsorbent. Addition of silica to the sodium hydroxide aqueous solution further increased the lead ion adsorption capacity. Langmuir adsorption isotherms revealed that the highest maximum adsorption capacity of 1658.1 mg-Pb/g was obtained when 5 g of silica was added to 50 mL of the sodium hydroxide aqueous solution. The adsorption capacity for lead ion decreased when more than 10 g of silica was added to the sodium hydroxide aqueous solution.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.