基于空间分辨宿主细胞测量的成纤维细胞 IV 表征

IF 8 2区 材料科学 Q1 ENERGY & FUELS Progress in Photovoltaics Pub Date : 2023-12-26 DOI:10.1002/pip.3764
Philipp Kunze, Matthias Demant, Alexander Krieg, Ammar Tummalieh, Nico Wöhrle, Stefan Rein
{"title":"基于空间分辨宿主细胞测量的成纤维细胞 IV 表征","authors":"Philipp Kunze, Matthias Demant, Alexander Krieg, Ammar Tummalieh, Nico Wöhrle, Stefan Rein","doi":"10.1002/pip.3764","DOIUrl":null,"url":null,"abstract":"Each solar cell is characterized at the end-of-line using current-voltage (\n<math altimg=\"urn:x-wiley:pip:media:pip3764:pip3764-math-0003\" display=\"inline\" location=\"graphic/pip3764-math-0003.png\">\n<semantics>\n<mrow>\n<mi>I</mi>\n<mi>V</mi>\n</mrow>\n$$ IV $$</annotation>\n</semantics></math>) measurements, except shingle cells, due to multiplied measurement efforts. Therefore, the respective host cell quality is adopted for all resulting shingles, which is sufficient for samples with laterally homogeneous quality. Yet, for heterogeneous defect distributions, this procedure leads to (i) loss of high-quality shingles due to defects on neighboring host cell parts, (ii) increased mismatch losses due to inaccurate binning, and (iii) lack of shingle-precise characterization. In spatially resolved host measurements, such as electroluminescence images, all shingles are visible along with their properties. Within a comprehensive experiment, 840 hosts and their resulting shingles are measured. Thereafter, a deep learning model has been designed and optimized which processes host images and determines <math altimg=\"urn:x-wiley:pip:media:pip3764:pip3764-math-0004\" display=\"inline\" location=\"graphic/pip3764-math-0004.png\">\n<semantics>\n<mrow>\n<mi>I</mi>\n<mi>V</mi>\n</mrow>\n$$ IV $$</annotation>\n</semantics></math> parameters like efficiency or fill factor, <math altimg=\"urn:x-wiley:pip:media:pip3764:pip3764-math-0005\" display=\"inline\" location=\"graphic/pip3764-math-0005.png\">\n<semantics>\n<mrow>\n<mi>I</mi>\n<mi>V</mi>\n</mrow>\n$$ IV $$</annotation>\n</semantics></math> curves, and binning classes for each shingle cell. The efficiency can be determined with an error of <math altimg=\"urn:x-wiley:pip:media:pip3764:pip3764-math-0006\" display=\"inline\" location=\"graphic/pip3764-math-0006.png\">\n<semantics>\n<mrow>\n<mn>0</mn>\n<mo>.</mo>\n<mn>06</mn>\n<mo> </mo>\n<msub>\n<mtext>%</mtext>\n<mtext>abs</mtext>\n</msub>\n</mrow>\n$$ 0.06\\ {\\%}_{\\mathrm{abs}} $$</annotation>\n</semantics></math> enabling a <math altimg=\"urn:x-wiley:pip:media:pip3764:pip3764-math-0007\" display=\"inline\" location=\"graphic/pip3764-math-0007.png\">\n<semantics>\n<mrow>\n<mn>13</mn>\n<mo> </mo>\n<msub>\n<mtext>%</mtext>\n<mtext>abs</mtext>\n</msub>\n</mrow>\n$$ 13\\ {\\%}_{\\mathrm{abs}} $$</annotation>\n</semantics></math> improvement in correct assignment of shingles to bin classes compared with industry standard. This results in lower mismatch losses and higher output power on module level as demonstrated within simulations. Also, <math altimg=\"urn:x-wiley:pip:media:pip3764:pip3764-math-0008\" display=\"inline\" location=\"graphic/pip3764-math-0008.png\">\n<semantics>\n<mrow>\n<mi>I</mi>\n<mi>V</mi>\n</mrow>\n$$ IV $$</annotation>\n</semantics></math> curves of defective and defect-free shingle cells can be derived with good agreement to actual shingle measurements.","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"5 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shingle cell IV characterization based on spatially resolved host cell measurements\",\"authors\":\"Philipp Kunze, Matthias Demant, Alexander Krieg, Ammar Tummalieh, Nico Wöhrle, Stefan Rein\",\"doi\":\"10.1002/pip.3764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Each solar cell is characterized at the end-of-line using current-voltage (\\n<math altimg=\\\"urn:x-wiley:pip:media:pip3764:pip3764-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/pip3764-math-0003.png\\\">\\n<semantics>\\n<mrow>\\n<mi>I</mi>\\n<mi>V</mi>\\n</mrow>\\n$$ IV $$</annotation>\\n</semantics></math>) measurements, except shingle cells, due to multiplied measurement efforts. Therefore, the respective host cell quality is adopted for all resulting shingles, which is sufficient for samples with laterally homogeneous quality. Yet, for heterogeneous defect distributions, this procedure leads to (i) loss of high-quality shingles due to defects on neighboring host cell parts, (ii) increased mismatch losses due to inaccurate binning, and (iii) lack of shingle-precise characterization. In spatially resolved host measurements, such as electroluminescence images, all shingles are visible along with their properties. Within a comprehensive experiment, 840 hosts and their resulting shingles are measured. Thereafter, a deep learning model has been designed and optimized which processes host images and determines <math altimg=\\\"urn:x-wiley:pip:media:pip3764:pip3764-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/pip3764-math-0004.png\\\">\\n<semantics>\\n<mrow>\\n<mi>I</mi>\\n<mi>V</mi>\\n</mrow>\\n$$ IV $$</annotation>\\n</semantics></math> parameters like efficiency or fill factor, <math altimg=\\\"urn:x-wiley:pip:media:pip3764:pip3764-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/pip3764-math-0005.png\\\">\\n<semantics>\\n<mrow>\\n<mi>I</mi>\\n<mi>V</mi>\\n</mrow>\\n$$ IV $$</annotation>\\n</semantics></math> curves, and binning classes for each shingle cell. The efficiency can be determined with an error of <math altimg=\\\"urn:x-wiley:pip:media:pip3764:pip3764-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/pip3764-math-0006.png\\\">\\n<semantics>\\n<mrow>\\n<mn>0</mn>\\n<mo>.</mo>\\n<mn>06</mn>\\n<mo> </mo>\\n<msub>\\n<mtext>%</mtext>\\n<mtext>abs</mtext>\\n</msub>\\n</mrow>\\n$$ 0.06\\\\ {\\\\%}_{\\\\mathrm{abs}} $$</annotation>\\n</semantics></math> enabling a <math altimg=\\\"urn:x-wiley:pip:media:pip3764:pip3764-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/pip3764-math-0007.png\\\">\\n<semantics>\\n<mrow>\\n<mn>13</mn>\\n<mo> </mo>\\n<msub>\\n<mtext>%</mtext>\\n<mtext>abs</mtext>\\n</msub>\\n</mrow>\\n$$ 13\\\\ {\\\\%}_{\\\\mathrm{abs}} $$</annotation>\\n</semantics></math> improvement in correct assignment of shingles to bin classes compared with industry standard. This results in lower mismatch losses and higher output power on module level as demonstrated within simulations. Also, <math altimg=\\\"urn:x-wiley:pip:media:pip3764:pip3764-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/pip3764-math-0008.png\\\">\\n<semantics>\\n<mrow>\\n<mi>I</mi>\\n<mi>V</mi>\\n</mrow>\\n$$ IV $$</annotation>\\n</semantics></math> curves of defective and defect-free shingle cells can be derived with good agreement to actual shingle measurements.\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pip.3764\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pip.3764","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

每个太阳能电池都是在生产线末端使用电流-电压(IV$$IV$$)测量法进行表征的,但瓦片电池除外,因为测量工作量会倍增。因此,所有产生的电池片都采用各自的主电池质量,这对于质量横向均匀的样品来说是足够的。然而,对于缺陷分布不均匀的样品,这种方法会导致:(i) 由于邻近的主机电池部分存在缺陷而损失高质量的芯片;(ii) 由于分选不准确而增加错配损失;(iii) 缺乏芯片的精确表征。在电致发光图像等空间分辨宿主测量中,所有芯片及其特性都清晰可见。在一项综合实验中,要测量 840 个宿主及其产生的鳞片。之后,设计并优化了一个深度学习模型,该模型可处理宿主图像并确定 IV$$ IV$$ 参数,如效率或填充因子、IV$$ IV$$ 曲线以及每个闪片单元的分选类别。效率的确定误差为 0.06 %abs$$ 0.06\ {\%}_{mathrm{abs}}$$ 使得 13 %abs$$ 13 {\%}_{mathrm{abs}}与行业标准相比,"shingles to bin classes "的正确分配得到了改善。模拟结果表明,这降低了失配损耗,提高了模块级输出功率。此外,还可以得出有缺陷和无缺陷瓦片电池的 IV$$ IV$$ 曲线,并与实际瓦片测量结果保持良好一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shingle cell IV characterization based on spatially resolved host cell measurements
Each solar cell is characterized at the end-of-line using current-voltage ( I V $$ IV $$ ) measurements, except shingle cells, due to multiplied measurement efforts. Therefore, the respective host cell quality is adopted for all resulting shingles, which is sufficient for samples with laterally homogeneous quality. Yet, for heterogeneous defect distributions, this procedure leads to (i) loss of high-quality shingles due to defects on neighboring host cell parts, (ii) increased mismatch losses due to inaccurate binning, and (iii) lack of shingle-precise characterization. In spatially resolved host measurements, such as electroluminescence images, all shingles are visible along with their properties. Within a comprehensive experiment, 840 hosts and their resulting shingles are measured. Thereafter, a deep learning model has been designed and optimized which processes host images and determines I V $$ IV $$ parameters like efficiency or fill factor, I V $$ IV $$ curves, and binning classes for each shingle cell. The efficiency can be determined with an error of 0 . 06   % abs $$ 0.06\ {\%}_{\mathrm{abs}} $$ enabling a 13   % abs $$ 13\ {\%}_{\mathrm{abs}} $$ improvement in correct assignment of shingles to bin classes compared with industry standard. This results in lower mismatch losses and higher output power on module level as demonstrated within simulations. Also, I V $$ IV $$ curves of defective and defect-free shingle cells can be derived with good agreement to actual shingle measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
期刊最新文献
Issue Information Photovoltaics Literature Survey (No. 194) Issue Information Investigation of Potential-Induced Degradation and Recovery in Perovskite Minimodules Role of Ag Addition on the Microscopic Material Properties of (Ag,Cu)(In,Ga)Se2 Absorbers and Their Effects on Losses in the Open-Circuit Voltage of Corresponding Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1