{"title":"博西普韦药物对 2019-nCoV 主要蛋白酶抑制活性的硅学研究。","authors":"Gargi Tiwari, Madan Singh Chauhan, Dipendra Sharma","doi":"10.1515/znc-2023-0117","DOIUrl":null,"url":null,"abstract":"<p><p>Boceprevir drug is a ketoamide serine protease inhibitor with a linear peptidomimetic structure that exhibits inhibition activity against 2019-nCoV main protease. This paper reports electronic properties of boceprevir and its molecular docking as well as molecular dynamics simulation analysis with protein receptor. For this, the equilibrium structure of boceprevir has been obtained by DFT at B3LYP and ωB97XD levels with 6-311+G(d,p) basis set in gas and water mediums. HOMO-LUMO and absorption spectrum analysis have been used to evaluate the boceprevir's toxicity and photosensitivity, respectively. Molecular docking simulation has been performed to test the binding affinity of boceprevir with 2019-nCoV M<sup>PRO</sup>; which rendered a variety of desirable binding locations between the ligand and target protein's residue positions. The optimum binding location has been considered for molecular dynamics simulation. The findings have been addressed to clarify the boceprevir drug efficacy against the 2019-nCoV M<sup>PRO</sup>.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":"1-12"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In silico</i> study of inhibition activity of boceprevir drug against 2019-nCoV main protease.\",\"authors\":\"Gargi Tiwari, Madan Singh Chauhan, Dipendra Sharma\",\"doi\":\"10.1515/znc-2023-0117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Boceprevir drug is a ketoamide serine protease inhibitor with a linear peptidomimetic structure that exhibits inhibition activity against 2019-nCoV main protease. This paper reports electronic properties of boceprevir and its molecular docking as well as molecular dynamics simulation analysis with protein receptor. For this, the equilibrium structure of boceprevir has been obtained by DFT at B3LYP and ωB97XD levels with 6-311+G(d,p) basis set in gas and water mediums. HOMO-LUMO and absorption spectrum analysis have been used to evaluate the boceprevir's toxicity and photosensitivity, respectively. Molecular docking simulation has been performed to test the binding affinity of boceprevir with 2019-nCoV M<sup>PRO</sup>; which rendered a variety of desirable binding locations between the ligand and target protein's residue positions. The optimum binding location has been considered for molecular dynamics simulation. The findings have been addressed to clarify the boceprevir drug efficacy against the 2019-nCoV M<sup>PRO</sup>.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2023-0117\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2023-0117","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In silico study of inhibition activity of boceprevir drug against 2019-nCoV main protease.
Boceprevir drug is a ketoamide serine protease inhibitor with a linear peptidomimetic structure that exhibits inhibition activity against 2019-nCoV main protease. This paper reports electronic properties of boceprevir and its molecular docking as well as molecular dynamics simulation analysis with protein receptor. For this, the equilibrium structure of boceprevir has been obtained by DFT at B3LYP and ωB97XD levels with 6-311+G(d,p) basis set in gas and water mediums. HOMO-LUMO and absorption spectrum analysis have been used to evaluate the boceprevir's toxicity and photosensitivity, respectively. Molecular docking simulation has been performed to test the binding affinity of boceprevir with 2019-nCoV MPRO; which rendered a variety of desirable binding locations between the ligand and target protein's residue positions. The optimum binding location has been considered for molecular dynamics simulation. The findings have been addressed to clarify the boceprevir drug efficacy against the 2019-nCoV MPRO.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.