{"title":"通过精确氮管理减少玉米田收获后硝酸盐残留而不影响产量的潜力","authors":"","doi":"10.1007/s11119-023-10100-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Site-specific nitrogen management has been proposed as a tool to increase crop yield while decreasing nutrient losses to the environment. Many reports can be found on sensing technologies to quantify the variability within a field and the definition of management zones based on the observed variability. However, fewer studies have been dedicated to the selection of the most suitable N fertilizer management scenario: should more or less nutrients be applied in the zones with a lower crop productivity potential? To address this knowledge gap, nine Flemish maize fields were selected as potential candidates for precision fertilization based on the soil maps and historical vegetation index patterns. Within each field, two management zones were identified based on historical vegetation index patterns and electrical conductivity maps, and different fertilization strategies were tested in each zone. The field trial results in terms of yield and soil residual nitrate showed that site-specific N management outperforms the conventional practice only in the fields with temporally stable management zones. In the fields having differences in the physical soil properties (e.g. presence of stones or clay particles), affecting water availability, lower fertilization in zones with a poor soil productivity potential could be recommended. In the fields where the performance of the management zones changes from year to year mainly due to annual variation in precipitation, a risk of incorrect implementation of the precision fertilization concept was identified. Historical NDVI time series serve a good basis to delineate the temporally stable management zones.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential to reduce the nitrate residue after harvest in maize fields without sacrificing yield through precision nitrogen management\",\"authors\":\"\",\"doi\":\"10.1007/s11119-023-10100-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Site-specific nitrogen management has been proposed as a tool to increase crop yield while decreasing nutrient losses to the environment. Many reports can be found on sensing technologies to quantify the variability within a field and the definition of management zones based on the observed variability. However, fewer studies have been dedicated to the selection of the most suitable N fertilizer management scenario: should more or less nutrients be applied in the zones with a lower crop productivity potential? To address this knowledge gap, nine Flemish maize fields were selected as potential candidates for precision fertilization based on the soil maps and historical vegetation index patterns. Within each field, two management zones were identified based on historical vegetation index patterns and electrical conductivity maps, and different fertilization strategies were tested in each zone. The field trial results in terms of yield and soil residual nitrate showed that site-specific N management outperforms the conventional practice only in the fields with temporally stable management zones. In the fields having differences in the physical soil properties (e.g. presence of stones or clay particles), affecting water availability, lower fertilization in zones with a poor soil productivity potential could be recommended. In the fields where the performance of the management zones changes from year to year mainly due to annual variation in precipitation, a risk of incorrect implementation of the precision fertilization concept was identified. Historical NDVI time series serve a good basis to delineate the temporally stable management zones.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-023-10100-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10100-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Potential to reduce the nitrate residue after harvest in maize fields without sacrificing yield through precision nitrogen management
Abstract
Site-specific nitrogen management has been proposed as a tool to increase crop yield while decreasing nutrient losses to the environment. Many reports can be found on sensing technologies to quantify the variability within a field and the definition of management zones based on the observed variability. However, fewer studies have been dedicated to the selection of the most suitable N fertilizer management scenario: should more or less nutrients be applied in the zones with a lower crop productivity potential? To address this knowledge gap, nine Flemish maize fields were selected as potential candidates for precision fertilization based on the soil maps and historical vegetation index patterns. Within each field, two management zones were identified based on historical vegetation index patterns and electrical conductivity maps, and different fertilization strategies were tested in each zone. The field trial results in terms of yield and soil residual nitrate showed that site-specific N management outperforms the conventional practice only in the fields with temporally stable management zones. In the fields having differences in the physical soil properties (e.g. presence of stones or clay particles), affecting water availability, lower fertilization in zones with a poor soil productivity potential could be recommended. In the fields where the performance of the management zones changes from year to year mainly due to annual variation in precipitation, a risk of incorrect implementation of the precision fertilization concept was identified. Historical NDVI time series serve a good basis to delineate the temporally stable management zones.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.