{"title":"针对网络攻击的非线性时滞网络物理系统的事件触发式有限时间指令滤波跟踪控制","authors":"Yajing Ma, Yuan Wang, Zhanjie Li, Xiangpeng Xie","doi":"10.1631/fitee.2300613","DOIUrl":null,"url":null,"abstract":"<p>This article addresses the secure finite-time tracking problem via event-triggered command-filtered control for nonlinear time-delay cyber physical systems (CPSs) subject to cyber attacks. Under the attack circumstance, the output and state information of CPSs is unavailable for the feedback design, and the classical coordinate conversion of the iterative process is incompetent in relation to the tracking task. To solve this, a new coordinate conversion is proposed by considering the attack gains and the reference signal simultaneously. By employing the transformed variables, a modified fractional-order command-filtered signal is incorporated to overcome the complexity explosion issue, and the Nussbaum function is used to tackle the varying attack gains. By systematically constructing the Lyapunov–Krasovskii functional, an adaptive event-triggered mechanism is presented in detail, with which the communication resources are greatly saved, and the finite-time tracking of CPSs under cyber attacks is guaranteed. Finally, an example demonstrates the effectiveness.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered finite-time command-filtered tracking control for nonlinear time-delay cyber physical systems against cyber attacks\",\"authors\":\"Yajing Ma, Yuan Wang, Zhanjie Li, Xiangpeng Xie\",\"doi\":\"10.1631/fitee.2300613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article addresses the secure finite-time tracking problem via event-triggered command-filtered control for nonlinear time-delay cyber physical systems (CPSs) subject to cyber attacks. Under the attack circumstance, the output and state information of CPSs is unavailable for the feedback design, and the classical coordinate conversion of the iterative process is incompetent in relation to the tracking task. To solve this, a new coordinate conversion is proposed by considering the attack gains and the reference signal simultaneously. By employing the transformed variables, a modified fractional-order command-filtered signal is incorporated to overcome the complexity explosion issue, and the Nussbaum function is used to tackle the varying attack gains. By systematically constructing the Lyapunov–Krasovskii functional, an adaptive event-triggered mechanism is presented in detail, with which the communication resources are greatly saved, and the finite-time tracking of CPSs under cyber attacks is guaranteed. Finally, an example demonstrates the effectiveness.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300613\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Event-triggered finite-time command-filtered tracking control for nonlinear time-delay cyber physical systems against cyber attacks
This article addresses the secure finite-time tracking problem via event-triggered command-filtered control for nonlinear time-delay cyber physical systems (CPSs) subject to cyber attacks. Under the attack circumstance, the output and state information of CPSs is unavailable for the feedback design, and the classical coordinate conversion of the iterative process is incompetent in relation to the tracking task. To solve this, a new coordinate conversion is proposed by considering the attack gains and the reference signal simultaneously. By employing the transformed variables, a modified fractional-order command-filtered signal is incorporated to overcome the complexity explosion issue, and the Nussbaum function is used to tackle the varying attack gains. By systematically constructing the Lyapunov–Krasovskii functional, an adaptive event-triggered mechanism is presented in detail, with which the communication resources are greatly saved, and the finite-time tracking of CPSs under cyber attacks is guaranteed. Finally, an example demonstrates the effectiveness.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.