{"title":"时间序列应用的扩散模型:调查","authors":"Lequan Lin, Zhengkun Li, Ruikun Li, Xuliang Li, Junbin Gao","doi":"10.1631/fitee.2300310","DOIUrl":null,"url":null,"abstract":"<p>Diffusion models, a family of generative models based on deep learning, have become increasingly prominent in cutting-edge machine learning research. With distinguished performance in generating samples that resemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. In recent years, the concept of diffusion has been extended to time-series applications, and many powerful models have been developed. Considering the deficiency of a methodical summary and discourse on these models, we provide this survey as an elementary resource for new researchers in this area and to provide inspiration to motivate future research. For better understanding, we include an introduction about the basics of diffusion models. Except for this, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, and present them, separately, in three individual sections. We also compare different methods for the same application and highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-based methods and highlight potential future research directions.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion models for time-series applications: a survey\",\"authors\":\"Lequan Lin, Zhengkun Li, Ruikun Li, Xuliang Li, Junbin Gao\",\"doi\":\"10.1631/fitee.2300310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diffusion models, a family of generative models based on deep learning, have become increasingly prominent in cutting-edge machine learning research. With distinguished performance in generating samples that resemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. In recent years, the concept of diffusion has been extended to time-series applications, and many powerful models have been developed. Considering the deficiency of a methodical summary and discourse on these models, we provide this survey as an elementary resource for new researchers in this area and to provide inspiration to motivate future research. For better understanding, we include an introduction about the basics of diffusion models. Except for this, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, and present them, separately, in three individual sections. We also compare different methods for the same application and highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-based methods and highlight potential future research directions.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300310\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Diffusion models for time-series applications: a survey
Diffusion models, a family of generative models based on deep learning, have become increasingly prominent in cutting-edge machine learning research. With distinguished performance in generating samples that resemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. In recent years, the concept of diffusion has been extended to time-series applications, and many powerful models have been developed. Considering the deficiency of a methodical summary and discourse on these models, we provide this survey as an elementary resource for new researchers in this area and to provide inspiration to motivate future research. For better understanding, we include an introduction about the basics of diffusion models. Except for this, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, and present them, separately, in three individual sections. We also compare different methods for the same application and highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-based methods and highlight potential future research directions.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.