T. Karlsson , E. Åblad , T. Hermansson , J.S. Carlson , G. Tenfält
{"title":"在可定制的 3D 环境中自动进行电缆线束布局布线","authors":"T. Karlsson , E. Åblad , T. Hermansson , J.S. Carlson , G. Tenfält","doi":"10.1016/j.cad.2023.103671","DOIUrl":null,"url":null,"abstract":"<div><p>Designing cable harnesses can be time-consuming and complex due to many design and manufacturing aspects and rules. Automating the design process can help to fulfil these rules, speed up the process, and optimize the design. To accommodate this, we formulate a harness routing optimization problem to minimize cable lengths, maximize bundling by rewarding shared paths, and optimize the cables’ spatial location with respect to case-specific information of the routing environment, e.g., zones to avoid. A deterministic and computationally effective cable harness routing algorithm has been developed to solve the routing problem and is used to generate a set of cable harness topology candidates and approximate the Pareto front. Our approach was tested against a stochastic and an exact solver and our routing algorithm generated objective function values better than the stochastic approach and close to the exact solver. Our algorithm was able to find solutions, some of them being proven to be near-optimal, for three industrial-sized 3D cases within reasonable time (in magnitude of seconds to minutes) and the computation times were comparable to those of the stochastic approach.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103671"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448523002038/pdfft?md5=da6bdc185fb49f2cc2b9a3f0a384791e&pid=1-s2.0-S0010448523002038-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic Cable Harness Layout Routing in a Customizable 3D Environment\",\"authors\":\"T. Karlsson , E. Åblad , T. Hermansson , J.S. Carlson , G. Tenfält\",\"doi\":\"10.1016/j.cad.2023.103671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing cable harnesses can be time-consuming and complex due to many design and manufacturing aspects and rules. Automating the design process can help to fulfil these rules, speed up the process, and optimize the design. To accommodate this, we formulate a harness routing optimization problem to minimize cable lengths, maximize bundling by rewarding shared paths, and optimize the cables’ spatial location with respect to case-specific information of the routing environment, e.g., zones to avoid. A deterministic and computationally effective cable harness routing algorithm has been developed to solve the routing problem and is used to generate a set of cable harness topology candidates and approximate the Pareto front. Our approach was tested against a stochastic and an exact solver and our routing algorithm generated objective function values better than the stochastic approach and close to the exact solver. Our algorithm was able to find solutions, some of them being proven to be near-optimal, for three industrial-sized 3D cases within reasonable time (in magnitude of seconds to minutes) and the computation times were comparable to those of the stochastic approach.</p></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"169 \",\"pages\":\"Article 103671\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010448523002038/pdfft?md5=da6bdc185fb49f2cc2b9a3f0a384791e&pid=1-s2.0-S0010448523002038-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448523002038\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523002038","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Automatic Cable Harness Layout Routing in a Customizable 3D Environment
Designing cable harnesses can be time-consuming and complex due to many design and manufacturing aspects and rules. Automating the design process can help to fulfil these rules, speed up the process, and optimize the design. To accommodate this, we formulate a harness routing optimization problem to minimize cable lengths, maximize bundling by rewarding shared paths, and optimize the cables’ spatial location with respect to case-specific information of the routing environment, e.g., zones to avoid. A deterministic and computationally effective cable harness routing algorithm has been developed to solve the routing problem and is used to generate a set of cable harness topology candidates and approximate the Pareto front. Our approach was tested against a stochastic and an exact solver and our routing algorithm generated objective function values better than the stochastic approach and close to the exact solver. Our algorithm was able to find solutions, some of them being proven to be near-optimal, for three industrial-sized 3D cases within reasonable time (in magnitude of seconds to minutes) and the computation times were comparable to those of the stochastic approach.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.