Raquel F.S. Gonçalves , Hualu Zhou , António A. Vicente , Ana C. Pinheiro , David Julian McClements
{"title":"用于输送生物活性化合物的植物基大凝胶:水凝胶:油凝胶比例和蛋白质浓度对其理化特性的影响","authors":"Raquel F.S. Gonçalves , Hualu Zhou , António A. Vicente , Ana C. Pinheiro , David Julian McClements","doi":"10.1016/j.foodhyd.2023.109721","DOIUrl":null,"url":null,"abstract":"<div><p>Bigels are a class of soft matter systems with high potential in food industry as fortified ingredient replacers or food analogs. The aim of this work was to develop plant-based bigels using potato protein-based hydrogel and candelilla wax-based oleogel. The potato protein concentration and hydrogel:oleogel ratio effects on bigels production was assessed in terms of textural and rheological properties. The incorporation of curcumin and its bioaccessibility after <em>in vitro</em> digestion was also evaluated. All samples presented an oleogel-in-hydrogel structure arrangement. Increasing the protein concentration led to increased hardness and <em>G*</em>, improving the structure and consistency of bigels. The increase of oleogel fraction altered the distribution of oleogel droplets in the hydrogel matrix, affecting the hardness and the consistency of bigels. Overall, the increase of oleogel fraction and protein concentration allowed forming bigels with stronger mechanical properties and higher thermal resistance. The bigel showed a curcumin's bioaccessibility of 16.3 % and a curcumin's stability of 43.8 %, suggesting that this type of structures is promising for the delivery of bioactive compounds at the colon or for slow release of bioactive compounds. Overall, the results showed the possibility to develop potato protein-based bigels with interesting mechanical, rheological and thermal properties by changing the protein concentration and hydrogel:oleogel ratio, expanding the application of bigels in novel food products with high nutritional value and protein content, namely plant-based products.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"150 ","pages":"Article 109721"},"PeriodicalIF":11.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268005X23012675/pdfft?md5=f6e692b5a41f20c45eee7090f19793dc&pid=1-s2.0-S0268005X23012675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Plant-based bigels for delivery of bioactive compounds: Influence of hydrogel:oleogel ratio and protein concentration on their physicochemical properties\",\"authors\":\"Raquel F.S. Gonçalves , Hualu Zhou , António A. Vicente , Ana C. Pinheiro , David Julian McClements\",\"doi\":\"10.1016/j.foodhyd.2023.109721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bigels are a class of soft matter systems with high potential in food industry as fortified ingredient replacers or food analogs. The aim of this work was to develop plant-based bigels using potato protein-based hydrogel and candelilla wax-based oleogel. The potato protein concentration and hydrogel:oleogel ratio effects on bigels production was assessed in terms of textural and rheological properties. The incorporation of curcumin and its bioaccessibility after <em>in vitro</em> digestion was also evaluated. All samples presented an oleogel-in-hydrogel structure arrangement. Increasing the protein concentration led to increased hardness and <em>G*</em>, improving the structure and consistency of bigels. The increase of oleogel fraction altered the distribution of oleogel droplets in the hydrogel matrix, affecting the hardness and the consistency of bigels. Overall, the increase of oleogel fraction and protein concentration allowed forming bigels with stronger mechanical properties and higher thermal resistance. The bigel showed a curcumin's bioaccessibility of 16.3 % and a curcumin's stability of 43.8 %, suggesting that this type of structures is promising for the delivery of bioactive compounds at the colon or for slow release of bioactive compounds. Overall, the results showed the possibility to develop potato protein-based bigels with interesting mechanical, rheological and thermal properties by changing the protein concentration and hydrogel:oleogel ratio, expanding the application of bigels in novel food products with high nutritional value and protein content, namely plant-based products.</p></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"150 \",\"pages\":\"Article 109721\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0268005X23012675/pdfft?md5=f6e692b5a41f20c45eee7090f19793dc&pid=1-s2.0-S0268005X23012675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X23012675\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X23012675","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Plant-based bigels for delivery of bioactive compounds: Influence of hydrogel:oleogel ratio and protein concentration on their physicochemical properties
Bigels are a class of soft matter systems with high potential in food industry as fortified ingredient replacers or food analogs. The aim of this work was to develop plant-based bigels using potato protein-based hydrogel and candelilla wax-based oleogel. The potato protein concentration and hydrogel:oleogel ratio effects on bigels production was assessed in terms of textural and rheological properties. The incorporation of curcumin and its bioaccessibility after in vitro digestion was also evaluated. All samples presented an oleogel-in-hydrogel structure arrangement. Increasing the protein concentration led to increased hardness and G*, improving the structure and consistency of bigels. The increase of oleogel fraction altered the distribution of oleogel droplets in the hydrogel matrix, affecting the hardness and the consistency of bigels. Overall, the increase of oleogel fraction and protein concentration allowed forming bigels with stronger mechanical properties and higher thermal resistance. The bigel showed a curcumin's bioaccessibility of 16.3 % and a curcumin's stability of 43.8 %, suggesting that this type of structures is promising for the delivery of bioactive compounds at the colon or for slow release of bioactive compounds. Overall, the results showed the possibility to develop potato protein-based bigels with interesting mechanical, rheological and thermal properties by changing the protein concentration and hydrogel:oleogel ratio, expanding the application of bigels in novel food products with high nutritional value and protein content, namely plant-based products.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.