Amit Chougule, Agneya Bhardwaj, Vinay Chamola, Pratik Narang
{"title":"AGD-Net:用于单张图像去毛刺的注意力引导高密度截取 U 网","authors":"Amit Chougule, Agneya Bhardwaj, Vinay Chamola, Pratik Narang","doi":"10.1007/s12559-023-10244-2","DOIUrl":null,"url":null,"abstract":"<p>Image hazing poses a significant challenge in various computer vision applications, degrading the visual quality and reducing the perceptual clarity of captured scenes. The proposed AGD-Net utilizes a U-Net style architecture with an Attention-Guided Dense Inception encoder-decoder framework. Unlike existing methods that heavily rely on synthetic datasets which are based on CARLA simulation, our model is trained and evaluated exclusively on realistic data, enabling its effectiveness and reliability in practical scenarios. The key innovation of AGD-Net lies in its attention-guided mechanism, which empowers the network to focus on crucial information within hazy images and effectively suppress artifacts during the dehazing process. The dense inception modules further advance the representation capabilities of the model, facilitating the extraction of intricate features from the input images. To assess the performance of AGD-Net, a detailed experimental analysis is conducted on four benchmark haze datasets. The results show that AGD-Net significantly outperforms the state-of-the-art methods in terms of PSNR and SSIM. Moreover, a visual comparison of the dehazing results further validates the superior performance gains achieved by AGD-Net over other methods. By leveraging realistic data exclusively, AGD-Net overcomes the limitations associated with synthetic datasets which are based on CARLA simulation, ensuring its adaptability and effectiveness in real-world circumstances. The proposed AGD-Net offers a robust and reliable solution for single-image dehazing, presenting a significant advancement over existing methods.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"7 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AGD-Net: Attention-Guided Dense Inception U-Net for Single-Image Dehazing\",\"authors\":\"Amit Chougule, Agneya Bhardwaj, Vinay Chamola, Pratik Narang\",\"doi\":\"10.1007/s12559-023-10244-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Image hazing poses a significant challenge in various computer vision applications, degrading the visual quality and reducing the perceptual clarity of captured scenes. The proposed AGD-Net utilizes a U-Net style architecture with an Attention-Guided Dense Inception encoder-decoder framework. Unlike existing methods that heavily rely on synthetic datasets which are based on CARLA simulation, our model is trained and evaluated exclusively on realistic data, enabling its effectiveness and reliability in practical scenarios. The key innovation of AGD-Net lies in its attention-guided mechanism, which empowers the network to focus on crucial information within hazy images and effectively suppress artifacts during the dehazing process. The dense inception modules further advance the representation capabilities of the model, facilitating the extraction of intricate features from the input images. To assess the performance of AGD-Net, a detailed experimental analysis is conducted on four benchmark haze datasets. The results show that AGD-Net significantly outperforms the state-of-the-art methods in terms of PSNR and SSIM. Moreover, a visual comparison of the dehazing results further validates the superior performance gains achieved by AGD-Net over other methods. By leveraging realistic data exclusively, AGD-Net overcomes the limitations associated with synthetic datasets which are based on CARLA simulation, ensuring its adaptability and effectiveness in real-world circumstances. The proposed AGD-Net offers a robust and reliable solution for single-image dehazing, presenting a significant advancement over existing methods.</p>\",\"PeriodicalId\":51243,\"journal\":{\"name\":\"Cognitive Computation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12559-023-10244-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-023-10244-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AGD-Net: Attention-Guided Dense Inception U-Net for Single-Image Dehazing
Image hazing poses a significant challenge in various computer vision applications, degrading the visual quality and reducing the perceptual clarity of captured scenes. The proposed AGD-Net utilizes a U-Net style architecture with an Attention-Guided Dense Inception encoder-decoder framework. Unlike existing methods that heavily rely on synthetic datasets which are based on CARLA simulation, our model is trained and evaluated exclusively on realistic data, enabling its effectiveness and reliability in practical scenarios. The key innovation of AGD-Net lies in its attention-guided mechanism, which empowers the network to focus on crucial information within hazy images and effectively suppress artifacts during the dehazing process. The dense inception modules further advance the representation capabilities of the model, facilitating the extraction of intricate features from the input images. To assess the performance of AGD-Net, a detailed experimental analysis is conducted on four benchmark haze datasets. The results show that AGD-Net significantly outperforms the state-of-the-art methods in terms of PSNR and SSIM. Moreover, a visual comparison of the dehazing results further validates the superior performance gains achieved by AGD-Net over other methods. By leveraging realistic data exclusively, AGD-Net overcomes the limitations associated with synthetic datasets which are based on CARLA simulation, ensuring its adaptability and effectiveness in real-world circumstances. The proposed AGD-Net offers a robust and reliable solution for single-image dehazing, presenting a significant advancement over existing methods.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.