{"title":"利用基于遥感的综合干旱指数监测土耳其埃尔金盆地的干旱动态","authors":"Kerim Aykut Gümüş, Filiz Bektaş Balçık, Tolga Esetlili, Ceyhan Kahya","doi":"10.1515/geo-2022-0594","DOIUrl":null,"url":null,"abstract":"Remote sensing-based approaches have gained widespread usage in drought monitoring studies. However, relying on single-variable drought indices may be inadequate to provide a comprehensive understanding of drought dynamics. In this study, principal component analysis was employed to derive a combined index, namely, the combined drought index (CDI), from multiple indices such as vegetation condition index, temperature condition index, precipitation condition index, and soil moisture condition index. The CDI was subsequently employed to analyze drought occurrences in the Ergene Basin-Türkiye period from 2001 to 2020 (May to October) using MODIS data. Correlations were computed with standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, and 6-month scales and crop yield. The results revealed that drought incidents transpired in the Ergene Basin for at least 1 month annually. May exhibited the wettest, while September stood as the driest month. The severity of drought and its spatial extent displayed an increasing trend followed by a subsequent decline during the aforementioned period. The CDI demonstrated stronger correlations with the 1-month standardized indices than the 3- and 6-month SPI-SPEI. A robust correlation of 0.79 was also observed between the CDI and the crop yield. In general, the CDI performed well in determining the spatial and temporal patterns of the historic droughts. As a result, the CDI could be leveraged to develop effective drought monitoring and management, which could help mitigate the negative impact of drought in the fragile environment of the Ergene Basin.","PeriodicalId":48712,"journal":{"name":"Open Geosciences","volume":"33 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring drought dynamics using remote sensing-based combined drought index in Ergene Basin, Türkiye\",\"authors\":\"Kerim Aykut Gümüş, Filiz Bektaş Balçık, Tolga Esetlili, Ceyhan Kahya\",\"doi\":\"10.1515/geo-2022-0594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing-based approaches have gained widespread usage in drought monitoring studies. However, relying on single-variable drought indices may be inadequate to provide a comprehensive understanding of drought dynamics. In this study, principal component analysis was employed to derive a combined index, namely, the combined drought index (CDI), from multiple indices such as vegetation condition index, temperature condition index, precipitation condition index, and soil moisture condition index. The CDI was subsequently employed to analyze drought occurrences in the Ergene Basin-Türkiye period from 2001 to 2020 (May to October) using MODIS data. Correlations were computed with standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, and 6-month scales and crop yield. The results revealed that drought incidents transpired in the Ergene Basin for at least 1 month annually. May exhibited the wettest, while September stood as the driest month. The severity of drought and its spatial extent displayed an increasing trend followed by a subsequent decline during the aforementioned period. The CDI demonstrated stronger correlations with the 1-month standardized indices than the 3- and 6-month SPI-SPEI. A robust correlation of 0.79 was also observed between the CDI and the crop yield. In general, the CDI performed well in determining the spatial and temporal patterns of the historic droughts. As a result, the CDI could be leveraged to develop effective drought monitoring and management, which could help mitigate the negative impact of drought in the fragile environment of the Ergene Basin.\",\"PeriodicalId\":48712,\"journal\":{\"name\":\"Open Geosciences\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0594\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0594","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Monitoring drought dynamics using remote sensing-based combined drought index in Ergene Basin, Türkiye
Remote sensing-based approaches have gained widespread usage in drought monitoring studies. However, relying on single-variable drought indices may be inadequate to provide a comprehensive understanding of drought dynamics. In this study, principal component analysis was employed to derive a combined index, namely, the combined drought index (CDI), from multiple indices such as vegetation condition index, temperature condition index, precipitation condition index, and soil moisture condition index. The CDI was subsequently employed to analyze drought occurrences in the Ergene Basin-Türkiye period from 2001 to 2020 (May to October) using MODIS data. Correlations were computed with standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, and 6-month scales and crop yield. The results revealed that drought incidents transpired in the Ergene Basin for at least 1 month annually. May exhibited the wettest, while September stood as the driest month. The severity of drought and its spatial extent displayed an increasing trend followed by a subsequent decline during the aforementioned period. The CDI demonstrated stronger correlations with the 1-month standardized indices than the 3- and 6-month SPI-SPEI. A robust correlation of 0.79 was also observed between the CDI and the crop yield. In general, the CDI performed well in determining the spatial and temporal patterns of the historic droughts. As a result, the CDI could be leveraged to develop effective drought monitoring and management, which could help mitigate the negative impact of drought in the fragile environment of the Ergene Basin.
期刊介绍:
Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an open access, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Atmospheric Sciences, Geology, Geophysics, Geography, Oceanography and Hydrology, Glaciology, Speleology, Volcanology, Soil Science, Palaeoecology, Geotourism, Geoinformatics, Geostatistics.